通过非线性交换对的正态逼近

Pub Date : 2020-08-05 DOI:10.30757/alea.v20-08
C. Dobler
{"title":"通过非线性交换对的正态逼近","authors":"C. Dobler","doi":"10.30757/alea.v20-08","DOIUrl":null,"url":null,"abstract":"We propose a new functional analytic approach to Stein's method of exchangeable pairs that does not require the pair at hand to satisfy any approximate linear regression property. We make use of this theory in order to derive abstract bounds on the normal and Gamma approximation of certain functionals in the Wasserstein distance. Moreover, we illustrate the relevance of this approach by means of three instances of situations to which it can be applied: Functionals of independent random variables, finite population statistics and functionals on finite groups. In the independent case, and in particular for symmetric $U$-statistics, we demonstrate in which respect this approach yields fundamentally better bounds than those in the existing literature. Finally, we apply our results to provide Wasserstein bounds in a CLT for subgraph counts in geometric random graphs based on $n$ i.i.d. points in Euclidean space as well as to the normal approximation of Pearson's statistic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Normal approximation via non-linear exchangeable pairs\",\"authors\":\"C. Dobler\",\"doi\":\"10.30757/alea.v20-08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new functional analytic approach to Stein's method of exchangeable pairs that does not require the pair at hand to satisfy any approximate linear regression property. We make use of this theory in order to derive abstract bounds on the normal and Gamma approximation of certain functionals in the Wasserstein distance. Moreover, we illustrate the relevance of this approach by means of three instances of situations to which it can be applied: Functionals of independent random variables, finite population statistics and functionals on finite groups. In the independent case, and in particular for symmetric $U$-statistics, we demonstrate in which respect this approach yields fundamentally better bounds than those in the existing literature. Finally, we apply our results to provide Wasserstein bounds in a CLT for subgraph counts in geometric random graphs based on $n$ i.i.d. points in Euclidean space as well as to the normal approximation of Pearson's statistic.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v20-08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v20-08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了一种新的泛函解析方法的Stein的交换对的方法,它不要求手头的对满足任何近似线性回归性质。我们利用这一理论来推导某些泛函在Wasserstein距离上的正态近似和伽玛近似的抽象界。此外,我们通过可以应用这种方法的三个情况实例来说明这种方法的相关性:独立随机变量的泛函,有限总体统计和有限群上的泛函。在独立的情况下,特别是对于对称的$U$统计,我们证明了这种方法在哪些方面产生了比现有文献中更好的边界。最后,我们将我们的结果应用于基于欧几里德空间中n个点的几何随机图的子图计数的CLT中的Wasserstein边界以及Pearson统计量的正态近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Normal approximation via non-linear exchangeable pairs
We propose a new functional analytic approach to Stein's method of exchangeable pairs that does not require the pair at hand to satisfy any approximate linear regression property. We make use of this theory in order to derive abstract bounds on the normal and Gamma approximation of certain functionals in the Wasserstein distance. Moreover, we illustrate the relevance of this approach by means of three instances of situations to which it can be applied: Functionals of independent random variables, finite population statistics and functionals on finite groups. In the independent case, and in particular for symmetric $U$-statistics, we demonstrate in which respect this approach yields fundamentally better bounds than those in the existing literature. Finally, we apply our results to provide Wasserstein bounds in a CLT for subgraph counts in geometric random graphs based on $n$ i.i.d. points in Euclidean space as well as to the normal approximation of Pearson's statistic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1