过量硼对番茄幼苗生长、膜稳定性及官能团的影响

IF 1.1 4区 生物学 Q3 PLANT SCIENCES Acta Botanica Croatica Pub Date : 2022-10-31 DOI:10.37427/botcro-2023-001
Abeer A. Radi, Hussein Kh. Salam, A. Hamada, F. Farghaly
{"title":"过量硼对番茄幼苗生长、膜稳定性及官能团的影响","authors":"Abeer A. Radi, Hussein Kh. Salam, A. Hamada, F. Farghaly","doi":"10.37427/botcro-2023-001","DOIUrl":null,"url":null,"abstract":"With the scarcity of good quality water, plants like tomatoes will be more susceptible to excess boron (EB) in Mediterranean regions. The effects of EB on the growth, free, semi-bound, and bound boron (B) concentrations, and macromolecules of the Solanum lycopersicum L. cultivar Castle Rock, were investigated in this study. Seedlings were exposed to four levels of EB using boric acid. The results manifested that EB inhibited tomato growth, total water content, and photosynthetic pigments. EB harmed the membrane stability, as seen by increased potassium (K) leakage, UV absorbance metabolites, and electrolyte conductivity (EC) in leaf disc solution. EB raised concentrations of free, semi-bound, and bound forms of B in seedlings. Fourier transform infrared spectroscopy (FTIR) data revealed that EB induced uneven wax deposition, altered the shape of cell walls, and lowered cellulose synthesis in seedlings. EB affected the amide I and amide II indicating damage to the protein pools. These results provide new insights into understanding the specific effects of EB on the functional groups of different macromolecules of tomato seedlings.","PeriodicalId":6967,"journal":{"name":"Acta Botanica Croatica","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of excess boron on growth, membrane stability, and functional groups of tomato seedlings\",\"authors\":\"Abeer A. Radi, Hussein Kh. Salam, A. Hamada, F. Farghaly\",\"doi\":\"10.37427/botcro-2023-001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the scarcity of good quality water, plants like tomatoes will be more susceptible to excess boron (EB) in Mediterranean regions. The effects of EB on the growth, free, semi-bound, and bound boron (B) concentrations, and macromolecules of the Solanum lycopersicum L. cultivar Castle Rock, were investigated in this study. Seedlings were exposed to four levels of EB using boric acid. The results manifested that EB inhibited tomato growth, total water content, and photosynthetic pigments. EB harmed the membrane stability, as seen by increased potassium (K) leakage, UV absorbance metabolites, and electrolyte conductivity (EC) in leaf disc solution. EB raised concentrations of free, semi-bound, and bound forms of B in seedlings. Fourier transform infrared spectroscopy (FTIR) data revealed that EB induced uneven wax deposition, altered the shape of cell walls, and lowered cellulose synthesis in seedlings. EB affected the amide I and amide II indicating damage to the protein pools. These results provide new insights into understanding the specific effects of EB on the functional groups of different macromolecules of tomato seedlings.\",\"PeriodicalId\":6967,\"journal\":{\"name\":\"Acta Botanica Croatica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Botanica Croatica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.37427/botcro-2023-001\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Botanica Croatica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.37427/botcro-2023-001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于缺乏优质水,像西红柿这样的植物在地中海地区更容易受到过量硼的影响。研究了EB对番茄品种Castle Rock生长、游离硼、半结合硼和结合硼浓度以及大分子的影响。使用硼酸将幼苗暴露在四个水平的EB中。结果表明,EB对番茄生长、总含水量和光合色素均有抑制作用。EB损害了膜的稳定性,表现为叶盘溶液中钾(K)渗漏、紫外线吸收代谢物和电解质电导率(EC)增加。EB提高了幼苗中游离、半结合和结合形式的B的浓度。傅立叶变换红外光谱(FTIR)数据显示,EB诱导了蜡的不均匀沉积,改变了细胞壁的形状,降低了幼苗中纤维素的合成。EB影响酰胺I和酰胺II,表明蛋白质库受损。这些结果为理解EB对番茄幼苗不同大分子官能团的特异性影响提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of excess boron on growth, membrane stability, and functional groups of tomato seedlings
With the scarcity of good quality water, plants like tomatoes will be more susceptible to excess boron (EB) in Mediterranean regions. The effects of EB on the growth, free, semi-bound, and bound boron (B) concentrations, and macromolecules of the Solanum lycopersicum L. cultivar Castle Rock, were investigated in this study. Seedlings were exposed to four levels of EB using boric acid. The results manifested that EB inhibited tomato growth, total water content, and photosynthetic pigments. EB harmed the membrane stability, as seen by increased potassium (K) leakage, UV absorbance metabolites, and electrolyte conductivity (EC) in leaf disc solution. EB raised concentrations of free, semi-bound, and bound forms of B in seedlings. Fourier transform infrared spectroscopy (FTIR) data revealed that EB induced uneven wax deposition, altered the shape of cell walls, and lowered cellulose synthesis in seedlings. EB affected the amide I and amide II indicating damage to the protein pools. These results provide new insights into understanding the specific effects of EB on the functional groups of different macromolecules of tomato seedlings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Botanica Croatica
Acta Botanica Croatica PLANT SCIENCES-
CiteScore
2.50
自引率
0.00%
发文量
34
审稿时长
>12 weeks
期刊介绍: The interest of the journal is field (terrestrial and aquatic) and experimental botany (including microorganisms, plant viruses, bacteria, unicellular algae), from subcellular level to ecosystems. The attention of the Journal is aimed to the research of karstic areas of the southern Europe, karstic waters and the Adriatic Sea (Mediterranean).
期刊最新文献
Micropropagation and optimisation of in vitro production of the rare and threatened moss Entosthodon pulchellus (Funariaceae) Leaf phenotypic plasticity of European ash (Fraxinus excelsior) at its northern range in Dinaric Alps Rapid spread of the Mediterranean glycophyte Catapodium rigidum in Hungary Carex distachya (Cyperaceae) with both subspecies in Europe Indications of programmed cell death in wheat roots upon exposure to silver nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1