三种银纳米粒子及其盐前体对人U-937和HL-60细胞的毒性作用

IF 2.8 4区 医学 Q2 TOXICOLOGY Toxicology Mechanisms and Methods Pub Date : 2017-01-02 DOI:10.1080/15376516.2016.1251520
A. Barbasz, M. Oćwieja, S. Walas
{"title":"三种银纳米粒子及其盐前体对人U-937和HL-60细胞的毒性作用","authors":"A. Barbasz, M. Oćwieja, S. Walas","doi":"10.1080/15376516.2016.1251520","DOIUrl":null,"url":null,"abstract":"Abstract The growing popularity of nanomaterials requires a systematic study of their effects on the human body. Silver nanoparticles (AgNPs), due to their antiseptic properties, are used in almost every area of life. The purpose of the study was to examine whether the precursor used for the synthesis of nanoparticles affects their bio-influence and modifies their impact on cells of the human immune system. To compare the effects of precursor silver salts (AgNO3, CH3COOAg and AgClO4) and corresponding nanoparticles (TAN TAA and TAC) cytotoxicity study was conducted on two cell lines U-937 and HL-60. For both cell lines, silver salts are more toxic than the corresponding nanoparticles. Cell viability after treatment with the two forms of silver (salt/particle) is dependent on silver dose and degree of cells differentiation. Addition of the silver salt of doses greater than 5 mg/L results in decreased cell viability by over 60%, whereas nanoparticles’ addition reduces cell viability on average by 30%. On the basis of the determined LD50 values it can be stated that for the tested cells the most toxic are AgClO4 and TAC. Production of nitric oxide, which is a mediator of inflammation, is the greatest after treatment of the cells by TAC. Different interactions of studied nanoparticles with albumin has been found and it was shown that addition of albumin to the cells treated by nanoparticles reduces their toxic effects. Obtained by us highly purified, mono-disperse AgNPs exhibit diverse effects relative to the biological systems, depending on the precursor salt used.","PeriodicalId":49117,"journal":{"name":"Toxicology Mechanisms and Methods","volume":"27 1","pages":"58 - 71"},"PeriodicalIF":2.8000,"publicationDate":"2017-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15376516.2016.1251520","citationCount":"10","resultStr":"{\"title\":\"Toxicological effects of three types of silver nanoparticles and their salt precursors acting on human U-937 and HL-60 cells\",\"authors\":\"A. Barbasz, M. Oćwieja, S. Walas\",\"doi\":\"10.1080/15376516.2016.1251520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The growing popularity of nanomaterials requires a systematic study of their effects on the human body. Silver nanoparticles (AgNPs), due to their antiseptic properties, are used in almost every area of life. The purpose of the study was to examine whether the precursor used for the synthesis of nanoparticles affects their bio-influence and modifies their impact on cells of the human immune system. To compare the effects of precursor silver salts (AgNO3, CH3COOAg and AgClO4) and corresponding nanoparticles (TAN TAA and TAC) cytotoxicity study was conducted on two cell lines U-937 and HL-60. For both cell lines, silver salts are more toxic than the corresponding nanoparticles. Cell viability after treatment with the two forms of silver (salt/particle) is dependent on silver dose and degree of cells differentiation. Addition of the silver salt of doses greater than 5 mg/L results in decreased cell viability by over 60%, whereas nanoparticles’ addition reduces cell viability on average by 30%. On the basis of the determined LD50 values it can be stated that for the tested cells the most toxic are AgClO4 and TAC. Production of nitric oxide, which is a mediator of inflammation, is the greatest after treatment of the cells by TAC. Different interactions of studied nanoparticles with albumin has been found and it was shown that addition of albumin to the cells treated by nanoparticles reduces their toxic effects. Obtained by us highly purified, mono-disperse AgNPs exhibit diverse effects relative to the biological systems, depending on the precursor salt used.\",\"PeriodicalId\":49117,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":\"27 1\",\"pages\":\"58 - 71\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2017-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15376516.2016.1251520\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2016.1251520\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2016.1251520","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 10

摘要

摘要纳米材料的日益普及需要对其对人体的影响进行系统的研究。银纳米粒子(AgNPs)由于其防腐性能,几乎应用于生活的各个领域。该研究的目的是检查用于合成纳米颗粒的前体是否影响其生物影响,并改变其对人类免疫系统细胞的影响。为了比较前体银盐(AgNO3、CH3COOAg和AgClO4)和相应的纳米颗粒(TAN-TAA和TAC)对两种细胞系U-937和HL-60的细胞毒性研究。对于这两种细胞系,银盐比相应的纳米颗粒毒性更大。用两种形式的银(盐/颗粒)处理后的细胞活力取决于银剂量和细胞分化程度。添加剂量大于5的银盐 mg/L导致细胞活力降低60%以上,而纳米颗粒的添加使细胞活力平均降低30%。基于所确定的LD50值,可以说对于测试的细胞来说毒性最大的是AgClO4和TAC。作为炎症介质的一氧化氮的产生在TAC处理细胞后最大。已经发现了所研究的纳米颗粒与白蛋白的不同相互作用,并且表明向经纳米颗粒处理的细胞中添加白蛋白可以降低其毒性作用。我们获得的高度纯化的单分散AgNP相对于生物系统表现出不同的效果,这取决于所使用的前体盐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toxicological effects of three types of silver nanoparticles and their salt precursors acting on human U-937 and HL-60 cells
Abstract The growing popularity of nanomaterials requires a systematic study of their effects on the human body. Silver nanoparticles (AgNPs), due to their antiseptic properties, are used in almost every area of life. The purpose of the study was to examine whether the precursor used for the synthesis of nanoparticles affects their bio-influence and modifies their impact on cells of the human immune system. To compare the effects of precursor silver salts (AgNO3, CH3COOAg and AgClO4) and corresponding nanoparticles (TAN TAA and TAC) cytotoxicity study was conducted on two cell lines U-937 and HL-60. For both cell lines, silver salts are more toxic than the corresponding nanoparticles. Cell viability after treatment with the two forms of silver (salt/particle) is dependent on silver dose and degree of cells differentiation. Addition of the silver salt of doses greater than 5 mg/L results in decreased cell viability by over 60%, whereas nanoparticles’ addition reduces cell viability on average by 30%. On the basis of the determined LD50 values it can be stated that for the tested cells the most toxic are AgClO4 and TAC. Production of nitric oxide, which is a mediator of inflammation, is the greatest after treatment of the cells by TAC. Different interactions of studied nanoparticles with albumin has been found and it was shown that addition of albumin to the cells treated by nanoparticles reduces their toxic effects. Obtained by us highly purified, mono-disperse AgNPs exhibit diverse effects relative to the biological systems, depending on the precursor salt used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
3.10%
发文量
66
期刊介绍: Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy. Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including: In vivo studies with standard and alternative species In vitro studies and alternative methodologies Molecular, biochemical, and cellular techniques Pharmacokinetics and pharmacodynamics Mathematical modeling and computer programs Forensic analyses Risk assessment Data collection and analysis.
期刊最新文献
Single-cell sequencing reveals lung cell fate evolution initiated by smoking to explore gene predictions of correlative diseases The ameliorative effect of Lactobacillus paracasei BEJ01 against FB1 induced spermatogenesis disturbance, testicular oxidative stress and histopathological damage. A studyforrest extension, MEG recordings while watching the audio-visual movie "Forrest Gump". Safety assessment of a novel, dietary pyrroloquinoline quinone disodium salt (mnemoPQQ®) Neuroprotective effect of Morin via TrkB/Akt pathway against diabetes mediated oxidative stress and apoptosis in neuronal cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1