{"title":"原料和油胺改性的伊朗硅藻土和沸石对全氟辛烷磺酸的吸附:材料和应用见解","authors":"Nafiseh Khodabakhshloo , Bhabananda Biswas","doi":"10.1016/j.clay.2023.107101","DOIUrl":null,"url":null,"abstract":"<div><p>Perfluorooctanesulfonate (PFOS) is a hazardous chemical, and its presence in surface and groundwater poses a risk to environmental quality and human health. Containment is often applied to immobilize PFOS to stop or minimize the exposure. Mineral-based materials became promising adsorbents. However, there is scope to develop adsorbents using locally available minerals and understand their adsorption mechanisms. Here, we developed oleylamine-modified composites using naturally occurring Iranian zeolite and diatomaceous earth (DE). The mineralogy and surface properties of materials were fully characterized, and the adsorption of PFOS from simulated wastewater was linked to it. Clinoptilolite in zeolite sample, calcite and kaolinite in DE were main mineral assemblages. The raw samples also contained silica as a main constituent of them. Thermogravimetric analysis suggested that the materials were successfully modified with the oleylamine molecules in the material's structure and surfaces. These were further supported by scanning electronic microscopy (SEM), Fourier transmission infrared spectroscopy (FTIR), and surface and pore size analysis. After adsorption at various pHs, the isotherm of adsorption was also performed at ambient temperature. Modified DE and zeolite tend to adsorb PFOS (14.1 and 25.5 mg/g, respectively) more than their raw counterparts (4.72 and 0.39 mg/g, respectively). Adsorption models suggest monolayer and, in rare cases multilayer binding capacities and affinities toward PFOS. We analyzed the post-adsorption materials and discovered that electrostatic and hydrophobic interaction was likely the main cause of PFOS adsorbed to the material. This research helps to improve our knowledge of how PFOS adheres to untreated and surfactant-altered zeolite and DE in aquatic environments.</p></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"244 ","pages":"Article 107101"},"PeriodicalIF":5.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169131723002880/pdfft?md5=9a44abda546afd4f39003029fb2a4d05&pid=1-s2.0-S0169131723002880-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Adsorption of aqueous perfluorooctane sulfonate by raw and oleylamine-modified Iranian diatomite and zeolite: Material and application insight\",\"authors\":\"Nafiseh Khodabakhshloo , Bhabananda Biswas\",\"doi\":\"10.1016/j.clay.2023.107101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Perfluorooctanesulfonate (PFOS) is a hazardous chemical, and its presence in surface and groundwater poses a risk to environmental quality and human health. Containment is often applied to immobilize PFOS to stop or minimize the exposure. Mineral-based materials became promising adsorbents. However, there is scope to develop adsorbents using locally available minerals and understand their adsorption mechanisms. Here, we developed oleylamine-modified composites using naturally occurring Iranian zeolite and diatomaceous earth (DE). The mineralogy and surface properties of materials were fully characterized, and the adsorption of PFOS from simulated wastewater was linked to it. Clinoptilolite in zeolite sample, calcite and kaolinite in DE were main mineral assemblages. The raw samples also contained silica as a main constituent of them. Thermogravimetric analysis suggested that the materials were successfully modified with the oleylamine molecules in the material's structure and surfaces. These were further supported by scanning electronic microscopy (SEM), Fourier transmission infrared spectroscopy (FTIR), and surface and pore size analysis. After adsorption at various pHs, the isotherm of adsorption was also performed at ambient temperature. Modified DE and zeolite tend to adsorb PFOS (14.1 and 25.5 mg/g, respectively) more than their raw counterparts (4.72 and 0.39 mg/g, respectively). Adsorption models suggest monolayer and, in rare cases multilayer binding capacities and affinities toward PFOS. We analyzed the post-adsorption materials and discovered that electrostatic and hydrophobic interaction was likely the main cause of PFOS adsorbed to the material. This research helps to improve our knowledge of how PFOS adheres to untreated and surfactant-altered zeolite and DE in aquatic environments.</p></div>\",\"PeriodicalId\":245,\"journal\":{\"name\":\"Applied Clay Science\",\"volume\":\"244 \",\"pages\":\"Article 107101\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169131723002880/pdfft?md5=9a44abda546afd4f39003029fb2a4d05&pid=1-s2.0-S0169131723002880-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clay Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169131723002880\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131723002880","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Adsorption of aqueous perfluorooctane sulfonate by raw and oleylamine-modified Iranian diatomite and zeolite: Material and application insight
Perfluorooctanesulfonate (PFOS) is a hazardous chemical, and its presence in surface and groundwater poses a risk to environmental quality and human health. Containment is often applied to immobilize PFOS to stop or minimize the exposure. Mineral-based materials became promising adsorbents. However, there is scope to develop adsorbents using locally available minerals and understand their adsorption mechanisms. Here, we developed oleylamine-modified composites using naturally occurring Iranian zeolite and diatomaceous earth (DE). The mineralogy and surface properties of materials were fully characterized, and the adsorption of PFOS from simulated wastewater was linked to it. Clinoptilolite in zeolite sample, calcite and kaolinite in DE were main mineral assemblages. The raw samples also contained silica as a main constituent of them. Thermogravimetric analysis suggested that the materials were successfully modified with the oleylamine molecules in the material's structure and surfaces. These were further supported by scanning electronic microscopy (SEM), Fourier transmission infrared spectroscopy (FTIR), and surface and pore size analysis. After adsorption at various pHs, the isotherm of adsorption was also performed at ambient temperature. Modified DE and zeolite tend to adsorb PFOS (14.1 and 25.5 mg/g, respectively) more than their raw counterparts (4.72 and 0.39 mg/g, respectively). Adsorption models suggest monolayer and, in rare cases multilayer binding capacities and affinities toward PFOS. We analyzed the post-adsorption materials and discovered that electrostatic and hydrophobic interaction was likely the main cause of PFOS adsorbed to the material. This research helps to improve our knowledge of how PFOS adheres to untreated and surfactant-altered zeolite and DE in aquatic environments.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...