{"title":"小参数非线性偏微分方程的两个近似对称框架:比较,关系,近似解","authors":"Mahmood R. Tarayrah, Brian Pitzel, A. Cheviakov","doi":"10.1017/S0956792522000407","DOIUrl":null,"url":null,"abstract":"Abstract The frameworks of Baikov–Gazizov–Ibragimov (BGI) and Fushchich–Shtelen (FS) approximate symmetries are used to study symmetry properties of partial differential equations with a small parameter. In general, it is shown that unlike the case of ordinary differential equations (ODEs), unstable BGI point symmetries of unperturbed partial differential equations (PDEs) do not necessarily yield local approximate symmetries for the perturbed model. While some relations between the BGI and FS approaches can be established, the two methods yield different approximate symmetry classifications. Detailed classifications are presented for two nonlinear PDE families. The second family includes a one-dimensional wave equation describing the wave motion in a hyperelastic material with a single family of fibers. For this model, approximate symmetries can be used to compute approximate closed-form solutions. Wave breaking times are found numerically and using the approximate solutions, which yield comparable results.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":"34 1","pages":"1017 - 1045"},"PeriodicalIF":2.3000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two approximate symmetry frameworks for nonlinear partial differential equations with a small parameter: Comparisons, relations, approximate solutions\",\"authors\":\"Mahmood R. Tarayrah, Brian Pitzel, A. Cheviakov\",\"doi\":\"10.1017/S0956792522000407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The frameworks of Baikov–Gazizov–Ibragimov (BGI) and Fushchich–Shtelen (FS) approximate symmetries are used to study symmetry properties of partial differential equations with a small parameter. In general, it is shown that unlike the case of ordinary differential equations (ODEs), unstable BGI point symmetries of unperturbed partial differential equations (PDEs) do not necessarily yield local approximate symmetries for the perturbed model. While some relations between the BGI and FS approaches can be established, the two methods yield different approximate symmetry classifications. Detailed classifications are presented for two nonlinear PDE families. The second family includes a one-dimensional wave equation describing the wave motion in a hyperelastic material with a single family of fibers. For this model, approximate symmetries can be used to compute approximate closed-form solutions. Wave breaking times are found numerically and using the approximate solutions, which yield comparable results.\",\"PeriodicalId\":51046,\"journal\":{\"name\":\"European Journal of Applied Mathematics\",\"volume\":\"34 1\",\"pages\":\"1017 - 1045\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0956792522000407\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0956792522000407","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Two approximate symmetry frameworks for nonlinear partial differential equations with a small parameter: Comparisons, relations, approximate solutions
Abstract The frameworks of Baikov–Gazizov–Ibragimov (BGI) and Fushchich–Shtelen (FS) approximate symmetries are used to study symmetry properties of partial differential equations with a small parameter. In general, it is shown that unlike the case of ordinary differential equations (ODEs), unstable BGI point symmetries of unperturbed partial differential equations (PDEs) do not necessarily yield local approximate symmetries for the perturbed model. While some relations between the BGI and FS approaches can be established, the two methods yield different approximate symmetry classifications. Detailed classifications are presented for two nonlinear PDE families. The second family includes a one-dimensional wave equation describing the wave motion in a hyperelastic material with a single family of fibers. For this model, approximate symmetries can be used to compute approximate closed-form solutions. Wave breaking times are found numerically and using the approximate solutions, which yield comparable results.
期刊介绍:
Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.