{"title":"马里昂岛古冰域的空间模型","authors":"E. Rudolph, D. Hedding, W. Nel","doi":"10.1017/S0954102022000293","DOIUrl":null,"url":null,"abstract":"Abstract Sub-Antarctic Marion Island's glacial history has acted as a control on abiotic terrestrial processes and the colonization and distribution of biotic species found on the island today. Recent chronological studies have shown an early deglaciation of the island and identified new geomorphological features associated with past ice dynamics. These permit a reassessment of ice extent during and after the island's last local glacial maximum. In this paper, we provide a revised reconstruction of the island's palaeo-ice extent by using a geomorphology-based approach to delineate palaeo-ice margins and demarcate possible glacial basins. The model presented here provides the needed spatial context for future studies on the variations in the distribution of species (e.g. microorganisms and plant species) and abiotic processes and forms (e.g. soil development and periglacial landforms). In addition, it highlights areas that require improved geophysical assessment in order to produce a more complete island-scale reconstruction of former ice extents (e.g. the west coast).","PeriodicalId":50972,"journal":{"name":"Antarctic Science","volume":"34 1","pages":"365 - 373"},"PeriodicalIF":1.8000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spatial model of Marion Island's palaeo-ice extent\",\"authors\":\"E. Rudolph, D. Hedding, W. Nel\",\"doi\":\"10.1017/S0954102022000293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Sub-Antarctic Marion Island's glacial history has acted as a control on abiotic terrestrial processes and the colonization and distribution of biotic species found on the island today. Recent chronological studies have shown an early deglaciation of the island and identified new geomorphological features associated with past ice dynamics. These permit a reassessment of ice extent during and after the island's last local glacial maximum. In this paper, we provide a revised reconstruction of the island's palaeo-ice extent by using a geomorphology-based approach to delineate palaeo-ice margins and demarcate possible glacial basins. The model presented here provides the needed spatial context for future studies on the variations in the distribution of species (e.g. microorganisms and plant species) and abiotic processes and forms (e.g. soil development and periglacial landforms). In addition, it highlights areas that require improved geophysical assessment in order to produce a more complete island-scale reconstruction of former ice extents (e.g. the west coast).\",\"PeriodicalId\":50972,\"journal\":{\"name\":\"Antarctic Science\",\"volume\":\"34 1\",\"pages\":\"365 - 373\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antarctic Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/S0954102022000293\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antarctic Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/S0954102022000293","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A spatial model of Marion Island's palaeo-ice extent
Abstract Sub-Antarctic Marion Island's glacial history has acted as a control on abiotic terrestrial processes and the colonization and distribution of biotic species found on the island today. Recent chronological studies have shown an early deglaciation of the island and identified new geomorphological features associated with past ice dynamics. These permit a reassessment of ice extent during and after the island's last local glacial maximum. In this paper, we provide a revised reconstruction of the island's palaeo-ice extent by using a geomorphology-based approach to delineate palaeo-ice margins and demarcate possible glacial basins. The model presented here provides the needed spatial context for future studies on the variations in the distribution of species (e.g. microorganisms and plant species) and abiotic processes and forms (e.g. soil development and periglacial landforms). In addition, it highlights areas that require improved geophysical assessment in order to produce a more complete island-scale reconstruction of former ice extents (e.g. the west coast).
期刊介绍:
Antarctic Science provides a truly international forum for the broad spread of studies that increasingly characterise scientific research in the Antarctic. Whilst emphasising interdisciplinary work, the journal publishes papers from environmental management to biodiversity, from volcanoes to icebergs, and from oceanography to the upper atmosphere. No other journal covers such a wide range of Antarctic scientific studies. The journal attracts papers from all countries currently undertaking Antarctic research. It publishes both review and data papers with no limits on length, two-page short notes on technical developments and recent discoveries, and book reviews. These, together with an editorial discussing broader aspects of science, provide a rich and varied mixture of items to interest researchers in all areas of science. There are no page charges, or charges for colour, to authors publishing in the Journal. One issue each year is normally devoted to a specific theme or papers from a major meeting.