Pub Date : 2024-09-19DOI: 10.1017/s0954102024000191
David G. Ainley, Virginia Morandini, Leo Salas, Nadav Nur, Jay Rotella, Kerry Barton, Phil O'B. Lyver, Kimberly T. Goetz, Michelle Larue, Rose Foster-Dyer, Claire L. Parkinson, Kevin R. Arrigo, Gert Van Dijken, Roxanne S. Beltran, Stacy Kim, Cassandra Brooks, Gerald Kooyman, Paul J. Ponganis, Fiona Shanhun, Dean P. Anderson
Most of the Ross Sea has been designated a marine protected area (MPA), proposed ‘to protect ecosystem structure and function’. To assess effectiveness, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) selected Adélie (Pygoscelis adeliae) and emperor (Aptenodytes forsteri) penguins, Weddell seals (Leptonychotes weddellii) and Antarctic toothfish (Dissostichus mawsoni) as ecosystem change ‘indicator species’. Stable for decades, penguin and seal populations increased during 1998–2018 to surpass historical levels, indicating that change in ecosystem structure and function is underway. We review historical impacts to population trends, decadal datasets of ocean climate and fishing pressure on toothfish. Statistical modelling for Adélie penguins and Weddell seals indicates that variability in climate factors and cumulative extraction of adult toothfish may explain these trends. These mesopredators, and adult toothfish, all prey heavily on Antarctic silverfish (Pleuragramma antarcticum). Toothfish removal may be altering intraguild predation dynamics, leading to competitive release of silverfish and contributing to penguin and seal population changes. Despite decades of ocean/weather change, increases in indicator species numbers around Ross Island only began once the toothfish fishery commenced. The rational-use, ecosystem-based viewpoint promoted by CCAMLR regarding toothfish management needs re-evaluation, including in the context of the Ross Sea Region MPA.
{"title":"Response of indicator species to changes in food web and ocean dynamics of the Ross Sea, Antarctica","authors":"David G. Ainley, Virginia Morandini, Leo Salas, Nadav Nur, Jay Rotella, Kerry Barton, Phil O'B. Lyver, Kimberly T. Goetz, Michelle Larue, Rose Foster-Dyer, Claire L. Parkinson, Kevin R. Arrigo, Gert Van Dijken, Roxanne S. Beltran, Stacy Kim, Cassandra Brooks, Gerald Kooyman, Paul J. Ponganis, Fiona Shanhun, Dean P. Anderson","doi":"10.1017/s0954102024000191","DOIUrl":"https://doi.org/10.1017/s0954102024000191","url":null,"abstract":"<p>Most of the Ross Sea has been designated a marine protected area (MPA), proposed ‘to protect ecosystem structure and function’. To assess effectiveness, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) selected Adélie (<span>Pygoscelis adeliae</span>) and emperor (<span>Aptenodytes forsteri</span>) penguins, Weddell seals (<span>Leptonychotes weddellii</span>) and Antarctic toothfish (<span>Dissostichus mawsoni</span>) as ecosystem change ‘indicator species’. Stable for decades, penguin and seal populations increased during 1998–2018 to surpass historical levels, indicating that change in ecosystem structure and function is underway. We review historical impacts to population trends, decadal datasets of ocean climate and fishing pressure on toothfish. Statistical modelling for Adélie penguins and Weddell seals indicates that variability in climate factors and cumulative extraction of adult toothfish may explain these trends. These mesopredators, and adult toothfish, all prey heavily on Antarctic silverfish (<span>Pleuragramma antarcticum</span>). Toothfish removal may be altering intraguild predation dynamics, leading to competitive release of silverfish and contributing to penguin and seal population changes. Despite decades of ocean/weather change, increases in indicator species numbers around Ross Island only began once the toothfish fishery commenced. The rational-use, ecosystem-based viewpoint promoted by CCAMLR regarding toothfish management needs re-evaluation, including in the context of the Ross Sea Region MPA.</p>","PeriodicalId":50972,"journal":{"name":"Antarctic Science","volume":"19 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1017/s0954102024000129
Zoë A. Thomas, Michael Macphail, Haidee Cadd, David J. Cantrill, David K. Hutchinson, Heather A. Haines, Karen Privat, Chris Turney, Stefanie Carter, Paul Brickle
We report the discovery of an ancient forest bed near Stanley, on the Falkland Islands, the second such ancient deposit identified on the South Atlantic island archipelago that is today marked by the absence of native tree species. Fossil pollen, spores and wood fragments preserved in this buried deposit at Tussac House show that the source vegetation was characterized by a floristically diverse rainforest dominated by Nothofagus-Podocarpaceae communities, similar to cool temperate Nothofagus forests/woodlands and Magellanic evergreen Nothofagus rainforests. The age limit of the deposit is inferred from the stratigraphic distribution of fossil pollen species transported by wind, birds or ocean currents from southern Patagonia, as well as similar vegetation types observed across the broader region. The deposit is suggested to be between Late Oligocene and Early Miocene, making it slightly older than the previously analysed Neogene West Point Island forest bed (200 km west of Tussac House). The combined evidence adds to our current knowledge of the role of climate change and transoceanic dispersal of plant propagules in shaping high-latitude ecosystems in the Southern Hemisphere during the late Palaeogene and Neogene.
{"title":"Evidence for a floristically diverse rainforest on the Falkland archipelago in the remote South Atlantic during the mid- to late Cenozoic","authors":"Zoë A. Thomas, Michael Macphail, Haidee Cadd, David J. Cantrill, David K. Hutchinson, Heather A. Haines, Karen Privat, Chris Turney, Stefanie Carter, Paul Brickle","doi":"10.1017/s0954102024000129","DOIUrl":"https://doi.org/10.1017/s0954102024000129","url":null,"abstract":"We report the discovery of an ancient forest bed near Stanley, on the Falkland Islands, the second such ancient deposit identified on the South Atlantic island archipelago that is today marked by the absence of native tree species. Fossil pollen, spores and wood fragments preserved in this buried deposit at <jats:italic>Tussac House</jats:italic> show that the source vegetation was characterized by a floristically diverse rainforest dominated by <jats:italic>Nothofagus</jats:italic>-Podocarpaceae communities, similar to cool temperate <jats:italic>Nothofagus</jats:italic> forests/woodlands and Magellanic evergreen <jats:italic>Nothofagus</jats:italic> rainforests. The age limit of the deposit is inferred from the stratigraphic distribution of fossil pollen species transported by wind, birds or ocean currents from southern Patagonia, as well as similar vegetation types observed across the broader region. The deposit is suggested to be between Late Oligocene and Early Miocene, making it slightly older than the previously analysed Neogene West Point Island forest bed (200 km west of <jats:italic>Tussac House</jats:italic>). The combined evidence adds to our current knowledge of the role of climate change and transoceanic dispersal of plant propagules in shaping high-latitude ecosystems in the Southern Hemisphere during the late Palaeogene and Neogene.","PeriodicalId":50972,"journal":{"name":"Antarctic Science","volume":"17 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1017/s0954102024000166
Ícaro Vieira, Fábio Oliveira, Roberto Ferreira Machado Michel
This spatial-scientometric study addresses research on Antarctic soils from 1958 to 2021. Through the review of 553 publications in the Web of Science and Scopus databases, geographical distribution, productivity, coauthorship and research topics were analysed. The results highlight the high productivity and interaction between researchers and institutions around the world, with a focus on microbiology, pollution, bioremediation, biogeochemistry and thermal and water monitoring of the soil and permafrost. This study provides insights into the importance of polar soils as global environmental indicators. The scientometric and spatial approach contributes to understanding the social and conceptual structure in this research area in addition to the development of the subject in time and space.
这项空间科学计量学研究探讨了 1958 年至 2021 年期间有关南极土壤的研究。通过审查 Web of Science 和 Scopus 数据库中的 553 篇出版物,分析了地理分布、生产率、共同作者和研究课题。研究结果凸显了世界各地研究人员和机构之间的高生产力和互动性,重点关注土壤和永久冻土的微生物学、污染、生物修复、生物地球化学以及水热监测。这项研究深入探讨了极地土壤作为全球环境指标的重要性。科学计量学和空间方法有助于了解该研究领域的社会和概念结构,以及该主题在时间和空间上的发展。
{"title":"Beyond the ice: exploring Antarctic soils research through spatial and scientometrics analysis","authors":"Ícaro Vieira, Fábio Oliveira, Roberto Ferreira Machado Michel","doi":"10.1017/s0954102024000166","DOIUrl":"https://doi.org/10.1017/s0954102024000166","url":null,"abstract":"This spatial-scientometric study addresses research on Antarctic soils from 1958 to 2021. Through the review of 553 publications in the Web of Science and Scopus databases, geographical distribution, productivity, coauthorship and research topics were analysed. The results highlight the high productivity and interaction between researchers and institutions around the world, with a focus on microbiology, pollution, bioremediation, biogeochemistry and thermal and water monitoring of the soil and permafrost. This study provides insights into the importance of polar soils as global environmental indicators. The scientometric and spatial approach contributes to understanding the social and conceptual structure in this research area in addition to the development of the subject in time and space.","PeriodicalId":50972,"journal":{"name":"Antarctic Science","volume":"14 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-30DOI: 10.1017/s0954102024000154
Silvia H. Coria, Soledad Pérez Catán, Andrea I. Pasquini, María Arribere, Rosemary Vieira, Luiz H. Rosa, Juan M. Lirio, Karina L. Lecomte
The geochemistry of lake sediments provides valuable information on environmental conditions and geochemical processes in polar regions. To characterize geochemical composition and to analyse weathering and provenance, 26 lakes located in six islands of the South Shetland Islands (SSI) and James Ross Archipelago (JRA) were analysed. Regarding major composition, the studied lake sediments correspond to ferruginous mudstones and to a lesser extent to mudstones. The weathering indices indicate incipient chemical alteration (Chemical Index of Alteration = 52.6; Plagioclase Index of Alteration = 57.6). The La-Th-Sc plot shows different provenance signatures. SSI lake sediments correspond to oceanic island arcs, whereas those of JRA denote a signal of continental arcs with mixed sources. In James Ross Island lake sediments are of continental arcs (inland lakes), oceanic island arcs (coastal lakes) and a middle signature (foreland lakes). Multi-elemental analysis indicates that the sediments are enriched from regional basalts in Ba, Rb, Th, Cs and U (typical of silica-rich rocks) and depleted in Cr and Co due to mafic mineral weathering. The geochemical signals identified by principal component analysis enable us to group the sediments according to the studied islands and their geomorphological characteristics. This study underlines the importance of knowing the geochemical background levels in pristine lake sediments to evaluate potential future anthropogenic effects.
{"title":"Geochemistry of lake sediments from the South Shetland Islands and James Ross Archipelago, north Antarctic Peninsula","authors":"Silvia H. Coria, Soledad Pérez Catán, Andrea I. Pasquini, María Arribere, Rosemary Vieira, Luiz H. Rosa, Juan M. Lirio, Karina L. Lecomte","doi":"10.1017/s0954102024000154","DOIUrl":"https://doi.org/10.1017/s0954102024000154","url":null,"abstract":"The geochemistry of lake sediments provides valuable information on environmental conditions and geochemical processes in polar regions. To characterize geochemical composition and to analyse weathering and provenance, 26 lakes located in six islands of the South Shetland Islands (SSI) and James Ross Archipelago (JRA) were analysed. Regarding major composition, the studied lake sediments correspond to ferruginous mudstones and to a lesser extent to mudstones. The weathering indices indicate incipient chemical alteration (Chemical Index of Alteration = 52.6; Plagioclase Index of Alteration = 57.6). The La-Th-Sc plot shows different provenance signatures. SSI lake sediments correspond to oceanic island arcs, whereas those of JRA denote a signal of continental arcs with mixed sources. In James Ross Island lake sediments are of continental arcs (inland lakes), oceanic island arcs (coastal lakes) and a middle signature (foreland lakes). Multi-elemental analysis indicates that the sediments are enriched from regional basalts in Ba, Rb, Th, Cs and U (typical of silica-rich rocks) and depleted in Cr and Co due to mafic mineral weathering. The geochemical signals identified by principal component analysis enable us to group the sediments according to the studied islands and their geomorphological characteristics. This study underlines the importance of knowing the geochemical background levels in pristine lake sediments to evaluate potential future anthropogenic effects.","PeriodicalId":50972,"journal":{"name":"Antarctic Science","volume":"96 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1017/s0954102024000014
Agustina Celeste Cottet, María Inés Messuti, Martín Ansaldo, Laura Patricia Dopchiz
Located east of the Antarctic Peninsula, Cockburn Island is a small island in the James Ross Archipelago. Studies of mosses on the island are scarce. The oldest studies date from the first half of the nineteenth century to the most recent in 1993. The number of records of mosses is very small due to the difficulty of accessing the area. Here, we report an updated composition of the moss flora of the plateau, in which four new records have been found: Bryoerythrophyllum antarcticum, Ceratodon purpureus, Pohlia wilsonii and Schistidium lewis-smithii. The occurrence of these species on the plateau shows that the ranges of these species have expanded from the Antarctic Peninsula to the east. This collection highlights the need for further research into the dynamics of moss flora in the context of climate change.
{"title":"Mosses of Cockburn Island plateau, Antarctica","authors":"Agustina Celeste Cottet, María Inés Messuti, Martín Ansaldo, Laura Patricia Dopchiz","doi":"10.1017/s0954102024000014","DOIUrl":"https://doi.org/10.1017/s0954102024000014","url":null,"abstract":"Located east of the Antarctic Peninsula, Cockburn Island is a small island in the James Ross Archipelago. Studies of mosses on the island are scarce. The oldest studies date from the first half of the nineteenth century to the most recent in 1993. The number of records of mosses is very small due to the difficulty of accessing the area. Here, we report an updated composition of the moss flora of the plateau, in which four new records have been found: <jats:italic>Bryoerythrophyllum antarcticum</jats:italic>, <jats:italic>Ceratodon purpureus</jats:italic>, <jats:italic>Pohlia wilsonii</jats:italic> and <jats:italic>Schistidium lewis-smithii</jats:italic>. The occurrence of these species on the plateau shows that the ranges of these species have expanded from the Antarctic Peninsula to the east. This collection highlights the need for further research into the dynamics of moss flora in the context of climate change.","PeriodicalId":50972,"journal":{"name":"Antarctic Science","volume":"139 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1017/s0954102024000099
William S. Pearman, Clare I.M. Adams, Maria Monteiro, Antonio Quesada, Ceridwen I. Fraser
The possible role of geothermal areas, such as volcanoes, in fostering biodiversity in Antarctica has received considerable recent attention. Under a geothermal refugia hypothesis, diverse life could be supported near or at geothermal sites, and we should see decreasing diversity and/or patterns of nestedness moving away from ‘hotspots’. Although there is evidence that geothermal areas have played a role in the persistence of some terrestrial species through glacial periods in Antarctica, the spatial scales at which such refugia operate is not clear. We sampled sediment from a range of locations across volcanic Deception Island in the Maritime Antarctic and used eDNA metabarcoding approaches (targeting a region of the 28S marker) to assess patterns of diversity in relation to thermal gradients. We found that although colder sites harboured significantly greater taxonomic richness than warmer sites, phylogenetic diversity was lower at colder sites (i.e. taxa at colder sites tend to be more evolutionary close to each other). We infer that increased selective processes in low-temperature environments have reduced phylogenetic diversity, supporting a hypothesis of geothermal locations acting as refugia for diverse taxa, even on fine spatial scales, in cold-climate regions such as Antarctica.
{"title":"Fine-scale phylogenetic diversity gradients support the Antarctic geothermal refugia hypothesis","authors":"William S. Pearman, Clare I.M. Adams, Maria Monteiro, Antonio Quesada, Ceridwen I. Fraser","doi":"10.1017/s0954102024000099","DOIUrl":"https://doi.org/10.1017/s0954102024000099","url":null,"abstract":"<p>The possible role of geothermal areas, such as volcanoes, in fostering biodiversity in Antarctica has received considerable recent attention. Under a geothermal refugia hypothesis, diverse life could be supported near or at geothermal sites, and we should see decreasing diversity and/or patterns of nestedness moving away from ‘hotspots’. Although there is evidence that geothermal areas have played a role in the persistence of some terrestrial species through glacial periods in Antarctica, the spatial scales at which such refugia operate is not clear. We sampled sediment from a range of locations across volcanic Deception Island in the Maritime Antarctic and used eDNA metabarcoding approaches (targeting a region of the 28S marker) to assess patterns of diversity in relation to thermal gradients. We found that although colder sites harboured significantly greater taxonomic richness than warmer sites, phylogenetic diversity was lower at colder sites (i.e. taxa at colder sites tend to be more evolutionary close to each other). We infer that increased selective processes in low-temperature environments have reduced phylogenetic diversity, supporting a hypothesis of geothermal locations acting as refugia for diverse taxa, even on fine spatial scales, in cold-climate regions such as Antarctica.</p>","PeriodicalId":50972,"journal":{"name":"Antarctic Science","volume":"4 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-19DOI: 10.1017/s0954102024000087
Michael S. Stone, Shawn P. Devlin, Ian Hawes, Kathleen A. Welch, Michael N. Gooseff, Cristina Takacs-Vesbach, Rachael Morgan-Kiss, Byron J. Adams, J.E. Barrett, John C. Priscu, Peter T. Doran
Aquatic ecosystems - lakes, ponds and streams - are hotspots of biodiversity in the cold and arid environment of Continental Antarctica. Environmental change is expected to increasingly alter Antarctic aquatic ecosystems and modify the physical characteristics and interactions within the habitats that they support. Here, we describe physical and biological features of the peripheral ‘moat’ of a closed-basin Antarctic lake. These moats mediate connectivity amongst streams, lake and soils. We highlight the cyclical moat transition from a frozen winter state to an active open-water summer system, through refreeze as winter returns. Summer melting begins at the lakebed, initially creating an ice-constrained lens of liquid water in November, which swiftly progresses upwards, creating open water in December. Conversely, freezing progresses slowly from the water surface downwards, with water at 1 m bottom depth remaining liquid until May. Moats support productive, diverse benthic communities that are taxonomically distinct from those under the adjacent permanent lake ice. We show how ion ratios suggest that summer exchange occurs amongst moats, streams, soils and sub-ice lake water, perhaps facilitated by within-moat density-driven convection. Moats occupy a small but dynamic area of lake habitat, are disproportionately affected by recent lake-level rises and may thus be particularly vulnerable to hydrological change.
{"title":"McMurdo Dry Valley lake edge ‘moats’: the ecological intersection between terrestrial and aquatic polar desert habitats","authors":"Michael S. Stone, Shawn P. Devlin, Ian Hawes, Kathleen A. Welch, Michael N. Gooseff, Cristina Takacs-Vesbach, Rachael Morgan-Kiss, Byron J. Adams, J.E. Barrett, John C. Priscu, Peter T. Doran","doi":"10.1017/s0954102024000087","DOIUrl":"https://doi.org/10.1017/s0954102024000087","url":null,"abstract":"Aquatic ecosystems - lakes, ponds and streams - are hotspots of biodiversity in the cold and arid environment of Continental Antarctica. Environmental change is expected to increasingly alter Antarctic aquatic ecosystems and modify the physical characteristics and interactions within the habitats that they support. Here, we describe physical and biological features of the peripheral ‘moat’ of a closed-basin Antarctic lake. These moats mediate connectivity amongst streams, lake and soils. We highlight the cyclical moat transition from a frozen winter state to an active open-water summer system, through refreeze as winter returns. Summer melting begins at the lakebed, initially creating an ice-constrained lens of liquid water in November, which swiftly progresses upwards, creating open water in December. Conversely, freezing progresses slowly from the water surface downwards, with water at 1 m bottom depth remaining liquid until May. Moats support productive, diverse benthic communities that are taxonomically distinct from those under the adjacent permanent lake ice. We show how ion ratios suggest that summer exchange occurs amongst moats, streams, soils and sub-ice lake water, perhaps facilitated by within-moat density-driven convection. Moats occupy a small but dynamic area of lake habitat, are disproportionately affected by recent lake-level rises and may thus be particularly vulnerable to hydrological change.","PeriodicalId":50972,"journal":{"name":"Antarctic Science","volume":"21 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140627500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-02DOI: 10.1017/s0954102024000063
Jamie Bojko, Jamie M. Maxwell, Amy L. Burgess, Lance Nicado, Brian Federici, Huw J. Griffiths, Louise Allcock
The Antarctic seaspider Pentanymphon antarcticum is a benthic species in the Southern Ocean, but little is known about its pathogen profile. In this study, we provide a draft genome for a new iridovirus species that has been identified using metagenomic techniques. The draft genome totals 157 260 bp and encodes 188 protein-coding genes. The virus shows greatest protein similarity to a ‘carnivorous sponge-associated iridovirus’ from a deep-sea sponge host. This study represents the first discovery of a pycnogonid iridovirus and the first iridovirus from the Antarctic region.
{"title":"An iridovirus from the Antarctic seaspider Pentanymphon antarcticum (Pycnogonida)","authors":"Jamie Bojko, Jamie M. Maxwell, Amy L. Burgess, Lance Nicado, Brian Federici, Huw J. Griffiths, Louise Allcock","doi":"10.1017/s0954102024000063","DOIUrl":"https://doi.org/10.1017/s0954102024000063","url":null,"abstract":"<p>The Antarctic seaspider <span>Pentanymphon antarcticum</span> is a benthic species in the Southern Ocean, but little is known about its pathogen profile. In this study, we provide a draft genome for a new iridovirus species that has been identified using metagenomic techniques. The draft genome totals 157 260 bp and encodes 188 protein-coding genes. The virus shows greatest protein similarity to a ‘carnivorous sponge-associated iridovirus’ from a deep-sea sponge host. This study represents the first discovery of a pycnogonid iridovirus and the first iridovirus from the Antarctic region.</p>","PeriodicalId":50972,"journal":{"name":"Antarctic Science","volume":"16 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140590491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-25DOI: 10.1017/s0954102023000408
Laurence J. Clarke, Eric J. Raes, Toby Travers, Patti Virtue, Dana M. Bergstrom
The Vestfold Hills are a 400 km2, isolated ice-free oasis in eastern Antarctica featuring large areas with translucent quartz rocks that provide habitat for hypolithic microbial communities underneath. We used high-throughput DNA sequencing of 16S and 18S ribosomal RNA amplicons to characterize bacterial and eukaryotic hypolithic communities across the Vestfold Hills. We found high-level, local heterogeneity in community structure consistent with limited dispersal between hypoliths. Hypolithic communities were dominated by heterotrophic Bacteroidetes (mean bacterial relative read abundance: 56%) as well as Cyanobacteria (35%), with the eukaryote component often dominated by Chlorophyta (43%). Small but significant proportions of the variation in microbial community composition and function were explained by soil salinity (5–7%) and water availability (8–11%), with distinct taxa associated with different salinities and water availabilities. Furthermore, many inferred bacterial metabolic pathways were enriched in hypolithic communities from either dry or high-salinity sites. Vestfold Hills hypolithic habitats are likely to be local refuges for bacterial and eukaryotic diversity. Gradients in soil salinity and water availability across the Vestfold Hills, in addition to the number and diversity of lake types and fjords as potential source populations, may contribute to the observed variation in the extremophile, hypolithic microbial community composition.
维斯特福尔德丘陵是南极洲东部一个面积为400平方公里的孤立无冰绿洲,这里有大片半透明的石英岩,为石下微生物群落提供了栖息地。我们利用 16S 和 18S 核糖体 RNA 扩增子的高通量 DNA 测序来描述整个维斯特福尔德丘陵的细菌和真核生物石下群落的特征。我们发现了群落结构的高水平局部异质性,这与基底石之间的有限散布是一致的。下石群落以异养细菌(平均细菌相对丰度:56%)和蓝藻(35%)为主,真核生物以叶绿体(43%)为主。土壤盐度(5%-7%)和水分供应量(8%-11%)解释了微生物群落组成和功能的变化,虽然所占比例很小,但却很重要,不同的盐度和水分供应量与不同的类群有关。此外,许多推断出的细菌代谢途径在来自干旱或高盐度地点的下石层群落中得到了丰富。维斯特福尔德丘陵下石栖息地很可能是细菌和真核生物多样性的本地庇护所。除了湖泊类型和峡湾作为潜在来源种群的数量和多样性之外,整个维斯特福尔德丘陵土壤盐度和水供应的梯度也可能是造成所观察到的嗜极端微生物、石下微生物群落组成变化的原因。
{"title":"Extremophile hypolithic communities in the Vestfold Hills, East Antarctica","authors":"Laurence J. Clarke, Eric J. Raes, Toby Travers, Patti Virtue, Dana M. Bergstrom","doi":"10.1017/s0954102023000408","DOIUrl":"https://doi.org/10.1017/s0954102023000408","url":null,"abstract":"The Vestfold Hills are a 400 km<jats:sup>2</jats:sup>, isolated ice-free oasis in eastern Antarctica featuring large areas with translucent quartz rocks that provide habitat for hypolithic microbial communities underneath. We used high-throughput DNA sequencing of 16S and 18S ribosomal RNA amplicons to characterize bacterial and eukaryotic hypolithic communities across the Vestfold Hills. We found high-level, local heterogeneity in community structure consistent with limited dispersal between hypoliths. Hypolithic communities were dominated by heterotrophic Bacteroidetes (mean bacterial relative read abundance: 56%) as well as Cyanobacteria (35%), with the eukaryote component often dominated by Chlorophyta (43%). Small but significant proportions of the variation in microbial community composition and function were explained by soil salinity (5–7%) and water availability (8–11%), with distinct taxa associated with different salinities and water availabilities. Furthermore, many inferred bacterial metabolic pathways were enriched in hypolithic communities from either dry or high-salinity sites. Vestfold Hills hypolithic habitats are likely to be local refuges for bacterial and eukaryotic diversity. Gradients in soil salinity and water availability across the Vestfold Hills, in addition to the number and diversity of lake types and fjords as potential source populations, may contribute to the observed variation in the extremophile, hypolithic microbial community composition.","PeriodicalId":50972,"journal":{"name":"Antarctic Science","volume":"47 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-18DOI: 10.1017/s0954102024000051
David G. Ainley, Virginia Morandini, Kerry Barton, Phil O'B. Lyver, Megan Elrod, Michelle A. Larue, Jean Pennycook
Among the longest Antarctic biological time series is that of Adélie penguin Pygoscelis adeliae population size at Cape Royds, 1955 to the present. Demographic trends over the 66 years fall into five periods: 1) decrease then recovery due to control of tourism from McMurdo Station/Scott Base; 2) further increase responding to the removal of > 20 000 trophically competing Antarctic minke whales Balaenoptera bonaerensis from the colony's wintering area; 3) stabilization but not decrease upon the ban of whaling in 1982, and whale recovery, owing to increased winds facilitating McMurdo Sound Polynya presence (easier ocean access during nesting); 4) decrease in 2001–2005 when two mega-icebergs, B15A/C16, opposed the wind effect by increasing sea-ice cover, thus limiting ocean access; and 5) after iceberg departure, minimal recovery due to the increased velocity of the wind-generated Ross Gyre reducing penguin breeding probability. A multivariant model using 1998–2018 data confirmed the roles of gyre speed (negative) and open water (positive) in colony growth. Additional negative influence came from high nest predation by south polar skuas Stercorarius maccormicki, reducing chick production, as well as perhaps increased trophic competition from nearby Weddell seals Leptonychotes weddellii. Clearly, long time series increase our understanding of penguin population dynamics responding to a complexity of factors.
{"title":"Varying population size of the Cape Royds Adélie penguin colony, 1955–2020: a synthesis","authors":"David G. Ainley, Virginia Morandini, Kerry Barton, Phil O'B. Lyver, Megan Elrod, Michelle A. Larue, Jean Pennycook","doi":"10.1017/s0954102024000051","DOIUrl":"https://doi.org/10.1017/s0954102024000051","url":null,"abstract":"<p>Among the longest Antarctic biological time series is that of Adélie penguin <span>Pygoscelis adeliae</span> population size at Cape Royds, 1955 to the present. Demographic trends over the 66 years fall into five periods: 1) decrease then recovery due to control of tourism from McMurdo Station/Scott Base; 2) further increase responding to the removal of > 20 000 trophically competing Antarctic minke whales <span>Balaenoptera bonaerensis</span> from the colony's wintering area; 3) stabilization but not decrease upon the ban of whaling in 1982, and whale recovery, owing to increased winds facilitating McMurdo Sound Polynya presence (easier ocean access during nesting); 4) decrease in 2001–2005 when two mega-icebergs, B15A/C16, opposed the wind effect by increasing sea-ice cover, thus limiting ocean access; and 5) after iceberg departure, minimal recovery due to the increased velocity of the wind-generated Ross Gyre reducing penguin breeding probability. A multivariant model using 1998–2018 data confirmed the roles of gyre speed (negative) and open water (positive) in colony growth. Additional negative influence came from high nest predation by south polar skuas <span>Stercorarius maccormicki</span>, reducing chick production, as well as perhaps increased trophic competition from nearby Weddell seals <span>Leptonychotes weddellii</span>. Clearly, long time series increase our understanding of penguin population dynamics responding to a complexity of factors.</p>","PeriodicalId":50972,"journal":{"name":"Antarctic Science","volume":"16 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}