热轧钢筋在混凝土中的腐蚀性能优化

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Corrosion Engineering, Science and Technology Pub Date : 2022-07-21 DOI:10.1080/1478422X.2022.2101179
Qinghai Zhou, Yanbin Yin, Zhiming Liu, Jiongming Zhang
{"title":"热轧钢筋在混凝土中的腐蚀性能优化","authors":"Qinghai Zhou, Yanbin Yin, Zhiming Liu, Jiongming Zhang","doi":"10.1080/1478422X.2022.2101179","DOIUrl":null,"url":null,"abstract":"ABSTRACT To optimising the corrosion resistance mechanism of hot-rolled steel bar, the effects of different tempering temperatures and high-oxygen-rich oxidation times were studied by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, electrochemical and atmospheric corrosion tests. The thickness of the oxide layer of the rebar could reach 10 μm and rarely corroded after high-oxygen-rich oxidation at 850°C for 1 s, which exhibits superior corrosion resistance. The electrochemical test results showed that the I corr value after 1 s of high-oxygen-rich oxidation at 850°C was about 0.02 mA cm−2, which was 56.4% lower than that of the heated specimen at 685°C (0.045 mA cm−2). The results of Raman spectroscopy showed that the rust layer of the heated specimen at 685°C mainly consisted of α-Fe2O3, γ-FeOOH and α-FeOOH, and the oxidised layer after 1 s of high-oxygen-rich oxidation at 850°C mainly consisted of α-Fe2O3 and Fe3O4, which maintained the original oxidised layer morphology.","PeriodicalId":10711,"journal":{"name":"Corrosion Engineering, Science and Technology","volume":"57 1","pages":"568 - 579"},"PeriodicalIF":1.5000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimising the corrosion performance of hot-rolled steel bar in concrete\",\"authors\":\"Qinghai Zhou, Yanbin Yin, Zhiming Liu, Jiongming Zhang\",\"doi\":\"10.1080/1478422X.2022.2101179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT To optimising the corrosion resistance mechanism of hot-rolled steel bar, the effects of different tempering temperatures and high-oxygen-rich oxidation times were studied by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, electrochemical and atmospheric corrosion tests. The thickness of the oxide layer of the rebar could reach 10 μm and rarely corroded after high-oxygen-rich oxidation at 850°C for 1 s, which exhibits superior corrosion resistance. The electrochemical test results showed that the I corr value after 1 s of high-oxygen-rich oxidation at 850°C was about 0.02 mA cm−2, which was 56.4% lower than that of the heated specimen at 685°C (0.045 mA cm−2). The results of Raman spectroscopy showed that the rust layer of the heated specimen at 685°C mainly consisted of α-Fe2O3, γ-FeOOH and α-FeOOH, and the oxidised layer after 1 s of high-oxygen-rich oxidation at 850°C mainly consisted of α-Fe2O3 and Fe3O4, which maintained the original oxidised layer morphology.\",\"PeriodicalId\":10711,\"journal\":{\"name\":\"Corrosion Engineering, Science and Technology\",\"volume\":\"57 1\",\"pages\":\"568 - 579\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Engineering, Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/1478422X.2022.2101179\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1478422X.2022.2101179","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要为了优化热轧钢筋的耐腐蚀机理,通过扫描电子显微镜、X射线衍射、拉曼光谱、电化学和大气腐蚀试验,研究了不同回火温度和高富氧氧化时间对其耐腐蚀性能的影响。钢筋的氧化层厚度可达10 μm,在850°C下高富氧氧化1小时后很少腐蚀 s、 其表现出优异的耐腐蚀性。电化学测试结果表明,1 850°C下高富氧氧化的s约为0.02 mA cm−2,比685°C(0.045 mA)下加热试样的温度低56.4% cm−2)。拉曼光谱结果表明,685°C加热试样的锈层主要由α-Fe2O3、γ-FeOOH和α-FeOOH组成,1 850°C下的高富氧氧化主要由α-Fe2O3和Fe3O4组成,它们保持了原始的氧化层形态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimising the corrosion performance of hot-rolled steel bar in concrete
ABSTRACT To optimising the corrosion resistance mechanism of hot-rolled steel bar, the effects of different tempering temperatures and high-oxygen-rich oxidation times were studied by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, electrochemical and atmospheric corrosion tests. The thickness of the oxide layer of the rebar could reach 10 μm and rarely corroded after high-oxygen-rich oxidation at 850°C for 1 s, which exhibits superior corrosion resistance. The electrochemical test results showed that the I corr value after 1 s of high-oxygen-rich oxidation at 850°C was about 0.02 mA cm−2, which was 56.4% lower than that of the heated specimen at 685°C (0.045 mA cm−2). The results of Raman spectroscopy showed that the rust layer of the heated specimen at 685°C mainly consisted of α-Fe2O3, γ-FeOOH and α-FeOOH, and the oxidised layer after 1 s of high-oxygen-rich oxidation at 850°C mainly consisted of α-Fe2O3 and Fe3O4, which maintained the original oxidised layer morphology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Corrosion Engineering, Science and Technology
Corrosion Engineering, Science and Technology 工程技术-材料科学:综合
CiteScore
3.20
自引率
5.60%
发文量
58
审稿时长
3.4 months
期刊介绍: Corrosion Engineering, Science and Technology provides broad international coverage of research and practice in corrosion processes and corrosion control. Peer-reviewed contributions address all aspects of corrosion engineering and corrosion science; there is strong emphasis on effective design and materials selection to combat corrosion and the journal carries failure case studies to further knowledge in these areas.
期刊最新文献
Vibratory polishing effects on passivity of 304L stainless steel surfaces Inhibition effect of nano-silica synergistic corrosion inhibitor on 110SSsteel in ultra-high temperature organic acidic environment An overview of progresses and challenges of electrochemically integrated multi-electrode arrays for probing localised corrosion in complex environmental conditions Effect of refrigerant absorbent combinations in the corrosion resistance of copper as structural material in absorption refrigeration systems (ARS) Cavitation erosion and corrosion-cavitation synergism behaviour of CoCrFeNiMnTi x high entropy alloy coatings prepared by laser cladding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1