斯瓦尔巴小冰期后冰川湖的演变:湖泊变化和湖泊类型清单

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Journal of Glaciology Pub Date : 2023-06-14 DOI:10.1017/jog.2023.34
Iwona Wieczorek, M. Strzelecki, Ł. Stachnik, J. Yde, Jakub Małecki
{"title":"斯瓦尔巴小冰期后冰川湖的演变:湖泊变化和湖泊类型清单","authors":"Iwona Wieczorek, M. Strzelecki, Ł. Stachnik, J. Yde, Jakub Małecki","doi":"10.1017/jog.2023.34","DOIUrl":null,"url":null,"abstract":"\n The rapid formation of glacial lakes is one of the most conspicuous landscape changes caused by atmospheric warming in glacierised regions. However, relatively little is known about the history and current state of glacial lakes in the High Arctic. This study aims to address this issue by providing the first inventory of glacial lakes in Svalbard, focusing in particular on the post-Little Ice Age evolution of glacial lakes and their typology. To do so, we used aerial photographs and satellite imagery together with archival topographic data from 1936 to 2020. The inventory comprises the development of 566 glacial lakes (146 km2) that were still in direct contact with glaciers during the period 2008–2012. The results show a consistent increase in the total area of glacial lakes from the 1930s to 2020 and suggest an apparent link between climatic and geological factors, and the formation of specific lake dam types: moraine, ice, or bedrock. We also detected 134 glacial lake drainage events that have occurred since the 1930s. This study shows that Svalbard has one of the highest rates of glacial lake development in the world, which is an indicator of the overall dynamics of landscape change in the archipelago in response to climate change.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Post-Little Ice Age glacial lake evolution in Svalbard: inventory of lake changes and lake types\",\"authors\":\"Iwona Wieczorek, M. Strzelecki, Ł. Stachnik, J. Yde, Jakub Małecki\",\"doi\":\"10.1017/jog.2023.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The rapid formation of glacial lakes is one of the most conspicuous landscape changes caused by atmospheric warming in glacierised regions. However, relatively little is known about the history and current state of glacial lakes in the High Arctic. This study aims to address this issue by providing the first inventory of glacial lakes in Svalbard, focusing in particular on the post-Little Ice Age evolution of glacial lakes and their typology. To do so, we used aerial photographs and satellite imagery together with archival topographic data from 1936 to 2020. The inventory comprises the development of 566 glacial lakes (146 km2) that were still in direct contact with glaciers during the period 2008–2012. The results show a consistent increase in the total area of glacial lakes from the 1930s to 2020 and suggest an apparent link between climatic and geological factors, and the formation of specific lake dam types: moraine, ice, or bedrock. We also detected 134 glacial lake drainage events that have occurred since the 1930s. This study shows that Svalbard has one of the highest rates of glacial lake development in the world, which is an indicator of the overall dynamics of landscape change in the archipelago in response to climate change.\",\"PeriodicalId\":15981,\"journal\":{\"name\":\"Journal of Glaciology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Glaciology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/jog.2023.34\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/jog.2023.34","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

冰川湖的快速形成是冰川地区大气变暖引起的最显著的景观变化之一。然而,人们对高北极地区冰川湖的历史和现状知之甚少。本研究旨在通过提供斯瓦尔巴群岛冰川湖的第一个清单来解决这个问题,特别关注小冰河期后冰川湖的演变及其类型学。为此,我们使用了航空照片和卫星图像以及1936年至2020年的档案地形数据。该清单包括2008-2012年期间仍与冰川直接接触的566个冰川湖(146平方公里)的发展情况。结果表明,从20世纪30年代到2020年,冰川湖的总面积持续增加,并表明气候和地质因素与特定湖坝类型(冰碛、冰或基岩)的形成之间存在明显的联系。我们还发现了自20世纪30年代以来发生的134次冰湖排水事件。这项研究表明,斯瓦尔巴群岛是世界上冰川湖发展速度最快的地区之一,这是该群岛应对气候变化的整体景观变化动态的一个指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Post-Little Ice Age glacial lake evolution in Svalbard: inventory of lake changes and lake types
The rapid formation of glacial lakes is one of the most conspicuous landscape changes caused by atmospheric warming in glacierised regions. However, relatively little is known about the history and current state of glacial lakes in the High Arctic. This study aims to address this issue by providing the first inventory of glacial lakes in Svalbard, focusing in particular on the post-Little Ice Age evolution of glacial lakes and their typology. To do so, we used aerial photographs and satellite imagery together with archival topographic data from 1936 to 2020. The inventory comprises the development of 566 glacial lakes (146 km2) that were still in direct contact with glaciers during the period 2008–2012. The results show a consistent increase in the total area of glacial lakes from the 1930s to 2020 and suggest an apparent link between climatic and geological factors, and the formation of specific lake dam types: moraine, ice, or bedrock. We also detected 134 glacial lake drainage events that have occurred since the 1930s. This study shows that Svalbard has one of the highest rates of glacial lake development in the world, which is an indicator of the overall dynamics of landscape change in the archipelago in response to climate change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Glaciology
Journal of Glaciology 地学-地球科学综合
CiteScore
5.80
自引率
14.70%
发文量
101
审稿时长
6 months
期刊介绍: Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.
期刊最新文献
Rift propagation signals the last act of the Thwaites Eastern Ice Shelf despite low basal melt rates Implications of high-resolution velocity and strain rate observations for modelling of Greenlandic tidewater glaciers Exploring canyons beneath Devon Ice Cap for sub-glacial drainage using radar and thermodynamic modeling Mechanical properties of pressure-frozen ice under triaxial compressive stress Retreat of the Greenland Ice Sheet leads to divergent patterns of reconfiguration at its freshwater and tidewater margins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1