巧克力太赫兹菲涅耳透镜

IF 0.5 Q4 OPTICS Photonics Letters of Poland Pub Date : 2020-12-17 DOI:10.4302/PLP.V12I4.1046
M. Surma, P. Komorowski, Maciej Neneman, A. Siemion
{"title":"巧克力太赫兹菲涅耳透镜","authors":"M. Surma, P. Komorowski, Maciej Neneman, A. Siemion","doi":"10.4302/PLP.V12I4.1046","DOIUrl":null,"url":null,"abstract":"Recent enormous development of 3D printing techniques gave the possibility of precise manufacturing of designed optical structures. This paper presents designing, manufacturing and the results obtained for chocolate Fresnel lens. Chocolate, similarly to wax, can be melted and used in the 3D printed form to create a terahertz (THz) optical element. Parameters of the chocolate lens are compared with the one made of wax. In simple applications both materials can be used as a cost-effective alternative for conventional optical materials used for THz range of radiation. Both lenses have been designed and compared for 140 GHz. Full Text: PDF References M. Naftaly, R.E. Miles, and P.J. Greenslade, \"THz transmission in polymer materials — a data library\", Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, 819-820 (2007). CrossRef S. Firoozabadi, F. Beltran-Mejia, A. Soltani, D. Jahn, S.F. Busch, J.C. Balzer, and M. Koch, \"THz transmission blazed grating made out of paper tissue\", 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-2 (2017). CrossRef D. Headland, W. Withayachumnankul, M. Webb, H. Ebendorff-Heidepriem, A. Luiten, and D. Abbott, \"Analysis of 3D-printed metal for rapid-prototyped reflective terahertz optics\", Optics express 24(15), 17384-17396 (2016). CrossRef S.F. Busch, M. Weidenbach, M. Fey, F. Schafer, T. Probst, and M. Koch, \"Optical Properties of 3D Printable Plastics in the THz Regime and their Application for 3D Printed THz Optics\", Journal of Infrared, Millimeter, and Terahertz Waves 35(12), 993-997 (2014). CrossRef C. Jordens, and M. Koch, \"Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy\", Optical Engineering 47(3), 037003 (2008). CrossRef A.D. Squires, E. Constable, and R.A. Lewis, \"3D Printed Terahertz Diffraction Gratings And Lenses\", Journal of Infrared, Millimeter, and Terahertz Waves 36(1), 72-80 (2015). CrossRef W. D. Furlan, V. Ferrando, J. A. Monsoriu, P. Zagrajek, E. Czerwinska, and M. Szustakowski, \"3D printed diffractive terahertz lenses\", Optics letters 41(8), 1748-1751 (2016). CrossRef X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, \"Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range\", Applied optics 54(36), 10641-10649 (2015). CrossRef S. Banerji, and B. Sensale-Rodriguez, \"3D-printed diffractive terahertz optical elements through computational design\", Micro-and Nanotechnology Sensors, Systems, and Applications XI 10982, 109822X, International Society for Optics and Photonics (2019). CrossRef M. Surma, I. Ducin, P. Zagrajek, and A. Siemion, \"Sub-Terahertz Computer Generated Hologram with Two Image Planes\", Applied Sciences 9(4), 659 (2019). CrossRef A. Siemion, P. Komorowski, M. Surma, I. Ducin, P. Sobotka, M. Walczakowski, and E. Czerwinska, \"Terahertz diffractive structures for compact in-reflection inspection setup\", Optics Express 28(1), 715-723 (2020). CrossRef E.R. Brown, J.E. Bjarnason, A.M. Fedor, and T.M. Korter, \"On the strong and narrow absorption signature in lactose at 0.53THz\", Applied Physics Letters 90(6), 061908 (2007). CrossRef M. Bernier, F. Garet, and J. L. Coutaz, \"Determining the Complex Refractive Index of Materials in the Far-Infrared from Terahertz Time-Domain Data\", Terahertz Spectroscopy-Cutting Edge Technology, Intech-Open Science (2017). CrossRef E.Hecht, Optics 5th global ed.(Boston, Pearson Education 2017). DirectLink","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"103-105"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chocolate Terahertz Fresnel Lens\",\"authors\":\"M. Surma, P. Komorowski, Maciej Neneman, A. Siemion\",\"doi\":\"10.4302/PLP.V12I4.1046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent enormous development of 3D printing techniques gave the possibility of precise manufacturing of designed optical structures. This paper presents designing, manufacturing and the results obtained for chocolate Fresnel lens. Chocolate, similarly to wax, can be melted and used in the 3D printed form to create a terahertz (THz) optical element. Parameters of the chocolate lens are compared with the one made of wax. In simple applications both materials can be used as a cost-effective alternative for conventional optical materials used for THz range of radiation. Both lenses have been designed and compared for 140 GHz. Full Text: PDF References M. Naftaly, R.E. Miles, and P.J. Greenslade, \\\"THz transmission in polymer materials — a data library\\\", Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, 819-820 (2007). CrossRef S. Firoozabadi, F. Beltran-Mejia, A. Soltani, D. Jahn, S.F. Busch, J.C. Balzer, and M. Koch, \\\"THz transmission blazed grating made out of paper tissue\\\", 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-2 (2017). CrossRef D. Headland, W. Withayachumnankul, M. Webb, H. Ebendorff-Heidepriem, A. Luiten, and D. Abbott, \\\"Analysis of 3D-printed metal for rapid-prototyped reflective terahertz optics\\\", Optics express 24(15), 17384-17396 (2016). CrossRef S.F. Busch, M. Weidenbach, M. Fey, F. Schafer, T. Probst, and M. Koch, \\\"Optical Properties of 3D Printable Plastics in the THz Regime and their Application for 3D Printed THz Optics\\\", Journal of Infrared, Millimeter, and Terahertz Waves 35(12), 993-997 (2014). CrossRef C. Jordens, and M. Koch, \\\"Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy\\\", Optical Engineering 47(3), 037003 (2008). CrossRef A.D. Squires, E. Constable, and R.A. Lewis, \\\"3D Printed Terahertz Diffraction Gratings And Lenses\\\", Journal of Infrared, Millimeter, and Terahertz Waves 36(1), 72-80 (2015). CrossRef W. D. Furlan, V. Ferrando, J. A. Monsoriu, P. Zagrajek, E. Czerwinska, and M. Szustakowski, \\\"3D printed diffractive terahertz lenses\\\", Optics letters 41(8), 1748-1751 (2016). CrossRef X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, \\\"Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range\\\", Applied optics 54(36), 10641-10649 (2015). CrossRef S. Banerji, and B. Sensale-Rodriguez, \\\"3D-printed diffractive terahertz optical elements through computational design\\\", Micro-and Nanotechnology Sensors, Systems, and Applications XI 10982, 109822X, International Society for Optics and Photonics (2019). CrossRef M. Surma, I. Ducin, P. Zagrajek, and A. Siemion, \\\"Sub-Terahertz Computer Generated Hologram with Two Image Planes\\\", Applied Sciences 9(4), 659 (2019). CrossRef A. Siemion, P. Komorowski, M. Surma, I. Ducin, P. Sobotka, M. Walczakowski, and E. Czerwinska, \\\"Terahertz diffractive structures for compact in-reflection inspection setup\\\", Optics Express 28(1), 715-723 (2020). CrossRef E.R. Brown, J.E. Bjarnason, A.M. Fedor, and T.M. Korter, \\\"On the strong and narrow absorption signature in lactose at 0.53THz\\\", Applied Physics Letters 90(6), 061908 (2007). CrossRef M. Bernier, F. Garet, and J. L. Coutaz, \\\"Determining the Complex Refractive Index of Materials in the Far-Infrared from Terahertz Time-Domain Data\\\", Terahertz Spectroscopy-Cutting Edge Technology, Intech-Open Science (2017). CrossRef E.Hecht, Optics 5th global ed.(Boston, Pearson Education 2017). DirectLink\",\"PeriodicalId\":20055,\"journal\":{\"name\":\"Photonics Letters of Poland\",\"volume\":\"12 1\",\"pages\":\"103-105\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Letters of Poland\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4302/PLP.V12I4.1046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/PLP.V12I4.1046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

最近3D打印技术的巨大发展为精确制造设计的光学结构提供了可能。本文介绍了巧克力菲涅尔透镜的设计、制造和结果。巧克力,类似于蜡,可以熔化并以3D打印的形式使用,以产生太赫兹(THz)光学元件。将巧克力镜片和蜡镜片的参数进行了比较。在简单的应用中,这两种材料都可以作为用于太赫兹辐射范围的传统光学材料的成本效益高的替代品。两种透镜都是针对140GHz进行设计和比较的。全文:PDF参考文献M.Naftaly、R.E.Miles和P.J.Greenslade,“聚合物材料中的太赫兹传输——一个数据库”,第32届红外和毫米波国际联合会议和第15届太赫兹电子国际会议,819-820(2007)。CrossRef S.Firoozabadi、F.Beltran Mejia、A.Soltani、D.Jahn、S.F.Busch、J.C.Balzer和M.Koch,“由纸巾制成的太赫兹透射闪耀光栅”,第42届红外、毫米波和太赫兹波国际会议,2017年第1-2期。CrossRef D.Headland、W.Withayachumnankul、M.Webb、H.Ebendorff Heideprime、A.Luiten和D.Abbott,“用于快速原型反射太赫兹光学的3D打印金属分析”,optics express 24(15),17384-17396(2016)。CrossRef S.F.Busch、M.Weidenbach、M.Fey、F.Schafer、T.Probst和M.Koch,“太赫兹区域中3D可打印塑料的光学特性及其在3D打印太赫兹光学中的应用”,《红外、毫米和太赫兹波杂志》35(12),993-997(2014)。CrossRef C.Jordens和M.Koch,“用脉冲太赫兹光谱法检测巧克力中的异物”,光学工程47(3),037003(2008)。CrossRef A.D.Squires、E.Constable和R.A.Lewis,“3D打印太赫兹衍射光栅和透镜”,《红外、毫米和太赫兹波杂志》36(1),72-80(2015)。CrossRef W.D.Furlan、V.Ferrando、J.A.Monsoriu、P.Zagrajek、E.Czerwinska和M.Szustakowski,“3D打印衍射太赫兹透镜”,光学字母41(8),1748-1751(2016)。CrossRef X.Wei,C.Liu,L.Niu,Z.Zhang,K.Wang,Z.Yang,J.Liu,“在太赫兹频率范围内通过3D打印轴锥生成任意阶贝塞尔光束”,应用光学54(36),10641-10649(2015)。CrossRef S.Banerji和B.Sensale-Rodriguez,“通过计算设计的3D打印衍射太赫兹光学元件”,微纳米技术传感器、系统和应用XI 10982109822X,国际光学和光子学会(2019)。CrossRef M.Surma、I.Ducin、P.Zagrajek和A.Siemion,“具有两个图像平面的亚太赫兹计算机生成全息图”,应用科学9(4),659(2019)。CrossRef A.Siemion、P.Komorowski、M.Surma、I.Ducin、P.Sobotka、M.Walczakowski和E.Czerwinska,“用于紧凑反射内检测装置的太赫兹衍射结构”,Optics Express 28(1),715-723(2020)。CrossRef E.R.Brown、J.E.Bjarnason、A.M.Fedor和T.M.Korter,“关于0.53THz下乳糖的强窄吸收特征”,《应用物理学快报》90(6),061908(2007)。CrossRef M.Bernier、F.Garet和J.L.Coutaz,“从太赫兹时域数据确定远红外材料的复折射率”,太赫兹光谱前沿技术,Intech开放科学(2017)。CrossRef E.Hecht,Optics第5版全球版(波士顿,培生教育2017)。对讲机功能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chocolate Terahertz Fresnel Lens
Recent enormous development of 3D printing techniques gave the possibility of precise manufacturing of designed optical structures. This paper presents designing, manufacturing and the results obtained for chocolate Fresnel lens. Chocolate, similarly to wax, can be melted and used in the 3D printed form to create a terahertz (THz) optical element. Parameters of the chocolate lens are compared with the one made of wax. In simple applications both materials can be used as a cost-effective alternative for conventional optical materials used for THz range of radiation. Both lenses have been designed and compared for 140 GHz. Full Text: PDF References M. Naftaly, R.E. Miles, and P.J. Greenslade, "THz transmission in polymer materials — a data library", Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, 819-820 (2007). CrossRef S. Firoozabadi, F. Beltran-Mejia, A. Soltani, D. Jahn, S.F. Busch, J.C. Balzer, and M. Koch, "THz transmission blazed grating made out of paper tissue", 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-2 (2017). CrossRef D. Headland, W. Withayachumnankul, M. Webb, H. Ebendorff-Heidepriem, A. Luiten, and D. Abbott, "Analysis of 3D-printed metal for rapid-prototyped reflective terahertz optics", Optics express 24(15), 17384-17396 (2016). CrossRef S.F. Busch, M. Weidenbach, M. Fey, F. Schafer, T. Probst, and M. Koch, "Optical Properties of 3D Printable Plastics in the THz Regime and their Application for 3D Printed THz Optics", Journal of Infrared, Millimeter, and Terahertz Waves 35(12), 993-997 (2014). CrossRef C. Jordens, and M. Koch, "Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy", Optical Engineering 47(3), 037003 (2008). CrossRef A.D. Squires, E. Constable, and R.A. Lewis, "3D Printed Terahertz Diffraction Gratings And Lenses", Journal of Infrared, Millimeter, and Terahertz Waves 36(1), 72-80 (2015). CrossRef W. D. Furlan, V. Ferrando, J. A. Monsoriu, P. Zagrajek, E. Czerwinska, and M. Szustakowski, "3D printed diffractive terahertz lenses", Optics letters 41(8), 1748-1751 (2016). CrossRef X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, "Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range", Applied optics 54(36), 10641-10649 (2015). CrossRef S. Banerji, and B. Sensale-Rodriguez, "3D-printed diffractive terahertz optical elements through computational design", Micro-and Nanotechnology Sensors, Systems, and Applications XI 10982, 109822X, International Society for Optics and Photonics (2019). CrossRef M. Surma, I. Ducin, P. Zagrajek, and A. Siemion, "Sub-Terahertz Computer Generated Hologram with Two Image Planes", Applied Sciences 9(4), 659 (2019). CrossRef A. Siemion, P. Komorowski, M. Surma, I. Ducin, P. Sobotka, M. Walczakowski, and E. Czerwinska, "Terahertz diffractive structures for compact in-reflection inspection setup", Optics Express 28(1), 715-723 (2020). CrossRef E.R. Brown, J.E. Bjarnason, A.M. Fedor, and T.M. Korter, "On the strong and narrow absorption signature in lactose at 0.53THz", Applied Physics Letters 90(6), 061908 (2007). CrossRef M. Bernier, F. Garet, and J. L. Coutaz, "Determining the Complex Refractive Index of Materials in the Far-Infrared from Terahertz Time-Domain Data", Terahertz Spectroscopy-Cutting Edge Technology, Intech-Open Science (2017). CrossRef E.Hecht, Optics 5th global ed.(Boston, Pearson Education 2017). DirectLink
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
24
期刊最新文献
Making use of Digital Image Correlation to identify the true character of the applied load Technological challenges in the development of silica-titania platform for integrated optics Modelling of Germanium-Based Perovskite Solar Cell for Different Hole Transport Materials and Defect Density Application of fiber optic sensors using Machine Learning algorithms for temperature measurement of lithium-ion batteries Focusing properties of Azimuthally Polarized Lorentz Gauss Vortex Beam through a Dielectric Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1