Carla Jaqueline Casaroti, J. Centeno, Stephan Fuchs
{"title":"一种基于感知器的决策树分类特征选择方法","authors":"Carla Jaqueline Casaroti, J. Centeno, Stephan Fuchs","doi":"10.1590/s1982-21702020000300015","DOIUrl":null,"url":null,"abstract":"The use of OBIA for high spatial resolution image classification can be divided in two main steps, the first being segmentation and the second regarding the labeling of the objects in accordance with a particular set of features and a classifier. Decision trees are often used to represent human knowledge in the latter. The issue falls in how to select a smaller amount of features from a feature space with spatial, spectral and textural variables to describe the classes of interest, which engenders the matter of choosing the best or more convenient feature selection (FS) method. In this work, an approach for FS within a decision tree was introduced using a single perceptron and the Backpropagation algorithm. Three alternatives were compared: single, double and multiple inputs, using a sequential backward search (SBS). Test regions were used to evaluate the efficiency of the proposed methods. Results showed that it is possible to use a single perceptron in each node, with an overall accuracy (OA) between 77.6% and 77.9%. Only SBS reached an OA larger than 88%. Thus, the quality of the proposed solution depends on the number of input features.","PeriodicalId":55347,"journal":{"name":"Boletim De Ciencias Geodesicas","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A PERCEPTRON-BASED FEATURE SELECTION APPROACH FOR DECISION TREE CLASSIFICATION\",\"authors\":\"Carla Jaqueline Casaroti, J. Centeno, Stephan Fuchs\",\"doi\":\"10.1590/s1982-21702020000300015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of OBIA for high spatial resolution image classification can be divided in two main steps, the first being segmentation and the second regarding the labeling of the objects in accordance with a particular set of features and a classifier. Decision trees are often used to represent human knowledge in the latter. The issue falls in how to select a smaller amount of features from a feature space with spatial, spectral and textural variables to describe the classes of interest, which engenders the matter of choosing the best or more convenient feature selection (FS) method. In this work, an approach for FS within a decision tree was introduced using a single perceptron and the Backpropagation algorithm. Three alternatives were compared: single, double and multiple inputs, using a sequential backward search (SBS). Test regions were used to evaluate the efficiency of the proposed methods. Results showed that it is possible to use a single perceptron in each node, with an overall accuracy (OA) between 77.6% and 77.9%. Only SBS reached an OA larger than 88%. Thus, the quality of the proposed solution depends on the number of input features.\",\"PeriodicalId\":55347,\"journal\":{\"name\":\"Boletim De Ciencias Geodesicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim De Ciencias Geodesicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/s1982-21702020000300015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim De Ciencias Geodesicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/s1982-21702020000300015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
A PERCEPTRON-BASED FEATURE SELECTION APPROACH FOR DECISION TREE CLASSIFICATION
The use of OBIA for high spatial resolution image classification can be divided in two main steps, the first being segmentation and the second regarding the labeling of the objects in accordance with a particular set of features and a classifier. Decision trees are often used to represent human knowledge in the latter. The issue falls in how to select a smaller amount of features from a feature space with spatial, spectral and textural variables to describe the classes of interest, which engenders the matter of choosing the best or more convenient feature selection (FS) method. In this work, an approach for FS within a decision tree was introduced using a single perceptron and the Backpropagation algorithm. Three alternatives were compared: single, double and multiple inputs, using a sequential backward search (SBS). Test regions were used to evaluate the efficiency of the proposed methods. Results showed that it is possible to use a single perceptron in each node, with an overall accuracy (OA) between 77.6% and 77.9%. Only SBS reached an OA larger than 88%. Thus, the quality of the proposed solution depends on the number of input features.
期刊介绍:
The Boletim de Ciências Geodésicas publishes original papers in the area of Geodetic Sciences and correlated ones (Geodesy, Photogrammetry and Remote Sensing, Cartography and Geographic Information Systems).
Submitted articles must be unpublished, and should not be under consideration for publication in any other journal. Previous publication of the paper in conference proceedings would not violate the originality requirements. Articles must be written preferably in English language.