Youngjun Lee, W. Jee, Yoon Sub Whang, C. Jung, Yang-Guk Chung, So-Yeon Lee
{"title":"良性与恶性软组织肿瘤:3T磁共振图像纹理分析及弥散加权成像鉴别","authors":"Youngjun Lee, W. Jee, Yoon Sub Whang, C. Jung, Yang-Guk Chung, So-Yeon Lee","doi":"10.13104/imri.2021.25.2.118","DOIUrl":null,"url":null,"abstract":"Purpose: To investigate the value of MR textural analysis, including use of diffusion-weighted imaging (DWI) to differentiate malignant from benign soft-tissue tumors on 3T MRI. Materials and Methods: We enrolled 69 patients (25 men, 44 women, ages 18 to 84 years) with pathologically confirmed soft-tissue tumors (29 benign, 40 malignant) who underwent pre-treatment 3T-MRI. We calculated MR texture, including mean, standard deviation (SD), skewness, kurtosis, mean of positive pixels (MPP), and entropy, according to different spatial-scale factors (SSF, 0, 2, 4, 6) on axial T1-and T2-weighted images (T1WI, T2WI), contrast-enhanced T1WI (CE-T1WI), high b-value DWI (800 sec/mm 2 ), and apparent diffusion coefficient (ADC) map. We used the Mann-Whitney U test, logistic regression, and area under the receiver operating characteristic curve (AUC) for statistical analysis. Results: Malignant soft-tissue tumors had significantly lower mean values of DWI, ADC, T2WI and CE-T1WI, MPP of ADC, and CE-T1WI, but significantly higher kurtosis of DWI, T1WI, and CE-T1WI, and entropy of DWI, ADC, and T2WI than did benign tumors (P < 0.050). In multivariate logistic regression, the mean ADC value (SSF, 6) and kurtosis of CE-T1WI (SSF, 4) were independently associated with malignancy (P ≤ 0.009). A multivariate model of MR features worked well for diagnosis of malignant soft-tissue tumors (AUC, 0.909). Conclusion: Accurate diagnosis could be obtained using MR textural analysis with DWI and CE-T1WI in differentiating benign from malignant soft-tissue tumors.","PeriodicalId":73505,"journal":{"name":"Investigative magnetic resonance imaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Benign versus Malignant Soft-Tissue Tumors: Differentiation with 3T Magnetic Resonance Image Textural Analysis Including Diffusion-Weighted Imaging\",\"authors\":\"Youngjun Lee, W. Jee, Yoon Sub Whang, C. Jung, Yang-Guk Chung, So-Yeon Lee\",\"doi\":\"10.13104/imri.2021.25.2.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: To investigate the value of MR textural analysis, including use of diffusion-weighted imaging (DWI) to differentiate malignant from benign soft-tissue tumors on 3T MRI. Materials and Methods: We enrolled 69 patients (25 men, 44 women, ages 18 to 84 years) with pathologically confirmed soft-tissue tumors (29 benign, 40 malignant) who underwent pre-treatment 3T-MRI. We calculated MR texture, including mean, standard deviation (SD), skewness, kurtosis, mean of positive pixels (MPP), and entropy, according to different spatial-scale factors (SSF, 0, 2, 4, 6) on axial T1-and T2-weighted images (T1WI, T2WI), contrast-enhanced T1WI (CE-T1WI), high b-value DWI (800 sec/mm 2 ), and apparent diffusion coefficient (ADC) map. We used the Mann-Whitney U test, logistic regression, and area under the receiver operating characteristic curve (AUC) for statistical analysis. Results: Malignant soft-tissue tumors had significantly lower mean values of DWI, ADC, T2WI and CE-T1WI, MPP of ADC, and CE-T1WI, but significantly higher kurtosis of DWI, T1WI, and CE-T1WI, and entropy of DWI, ADC, and T2WI than did benign tumors (P < 0.050). In multivariate logistic regression, the mean ADC value (SSF, 6) and kurtosis of CE-T1WI (SSF, 4) were independently associated with malignancy (P ≤ 0.009). A multivariate model of MR features worked well for diagnosis of malignant soft-tissue tumors (AUC, 0.909). Conclusion: Accurate diagnosis could be obtained using MR textural analysis with DWI and CE-T1WI in differentiating benign from malignant soft-tissue tumors.\",\"PeriodicalId\":73505,\"journal\":{\"name\":\"Investigative magnetic resonance imaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigative magnetic resonance imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13104/imri.2021.25.2.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative magnetic resonance imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13104/imri.2021.25.2.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Benign versus Malignant Soft-Tissue Tumors: Differentiation with 3T Magnetic Resonance Image Textural Analysis Including Diffusion-Weighted Imaging
Purpose: To investigate the value of MR textural analysis, including use of diffusion-weighted imaging (DWI) to differentiate malignant from benign soft-tissue tumors on 3T MRI. Materials and Methods: We enrolled 69 patients (25 men, 44 women, ages 18 to 84 years) with pathologically confirmed soft-tissue tumors (29 benign, 40 malignant) who underwent pre-treatment 3T-MRI. We calculated MR texture, including mean, standard deviation (SD), skewness, kurtosis, mean of positive pixels (MPP), and entropy, according to different spatial-scale factors (SSF, 0, 2, 4, 6) on axial T1-and T2-weighted images (T1WI, T2WI), contrast-enhanced T1WI (CE-T1WI), high b-value DWI (800 sec/mm 2 ), and apparent diffusion coefficient (ADC) map. We used the Mann-Whitney U test, logistic regression, and area under the receiver operating characteristic curve (AUC) for statistical analysis. Results: Malignant soft-tissue tumors had significantly lower mean values of DWI, ADC, T2WI and CE-T1WI, MPP of ADC, and CE-T1WI, but significantly higher kurtosis of DWI, T1WI, and CE-T1WI, and entropy of DWI, ADC, and T2WI than did benign tumors (P < 0.050). In multivariate logistic regression, the mean ADC value (SSF, 6) and kurtosis of CE-T1WI (SSF, 4) were independently associated with malignancy (P ≤ 0.009). A multivariate model of MR features worked well for diagnosis of malignant soft-tissue tumors (AUC, 0.909). Conclusion: Accurate diagnosis could be obtained using MR textural analysis with DWI and CE-T1WI in differentiating benign from malignant soft-tissue tumors.