S. Enayati, Haitao Li, James F. Campbell, Deng Pan
{"title":"无人机多模式疫苗配送网络设计","authors":"S. Enayati, Haitao Li, James F. Campbell, Deng Pan","doi":"10.1287/trsc.2023.1205","DOIUrl":null,"url":null,"abstract":"Childhood vaccines play a vital role in social welfare, but in hard-to-reach regions, poor transportation, and a weak cold chain limit vaccine availability. This opens the door for the use of vaccine delivery by drones (uncrewed aerial vehicles, or UAVs) with their fast transportation and reliance on little or no infrastructure. In this paper, we study the problem of strategic multimodal vaccine distribution, which simultaneously determines the locations of local distribution centers, drone bases, and drone relay stations, while obeying the cold chain time limit and drone range. Two mathematical optimization models with complementary strengths are developed. The first model considers the vaccine travel time at the aggregate level with a compact formulation, but it can be too conservative in meeting the cold chain time limit. The second model is based on the layered network framework to track the vaccine flow and travel time associated with each origin-destination (OD) pair. It allows the number of transshipments and the number of drone stops in a vaccine flow path to be limited, which reflects practical operations and can be computationally advantageous. Both models are applied for vaccine distribution network design with two types of drones in Vanuatu as a case study. Solutions with drones using our parameter settings are shown to generate large savings, with differentiated roles for large and small drones. To generalize the empirical findings and examine the performance of our models, we conduct comprehensive computational experiments to assess the sensitivity of optimal solutions and performance metrics to key problem parameters. History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics. Funding: This work was supported by the Association for Supply Chain Management (ASCM) and the University of Missouri Research Board (UMSL Award 0059109). Supplemental Material: The online supplement is available at https://doi.org/10.1287/trsc.2023.1205 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multimodal Vaccine Distribution Network Design with Drones\",\"authors\":\"S. Enayati, Haitao Li, James F. Campbell, Deng Pan\",\"doi\":\"10.1287/trsc.2023.1205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Childhood vaccines play a vital role in social welfare, but in hard-to-reach regions, poor transportation, and a weak cold chain limit vaccine availability. This opens the door for the use of vaccine delivery by drones (uncrewed aerial vehicles, or UAVs) with their fast transportation and reliance on little or no infrastructure. In this paper, we study the problem of strategic multimodal vaccine distribution, which simultaneously determines the locations of local distribution centers, drone bases, and drone relay stations, while obeying the cold chain time limit and drone range. Two mathematical optimization models with complementary strengths are developed. The first model considers the vaccine travel time at the aggregate level with a compact formulation, but it can be too conservative in meeting the cold chain time limit. The second model is based on the layered network framework to track the vaccine flow and travel time associated with each origin-destination (OD) pair. It allows the number of transshipments and the number of drone stops in a vaccine flow path to be limited, which reflects practical operations and can be computationally advantageous. Both models are applied for vaccine distribution network design with two types of drones in Vanuatu as a case study. Solutions with drones using our parameter settings are shown to generate large savings, with differentiated roles for large and small drones. To generalize the empirical findings and examine the performance of our models, we conduct comprehensive computational experiments to assess the sensitivity of optimal solutions and performance metrics to key problem parameters. History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics. Funding: This work was supported by the Association for Supply Chain Management (ASCM) and the University of Missouri Research Board (UMSL Award 0059109). Supplemental Material: The online supplement is available at https://doi.org/10.1287/trsc.2023.1205 .\",\"PeriodicalId\":51202,\"journal\":{\"name\":\"Transportation Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2023.1205\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2023.1205","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Multimodal Vaccine Distribution Network Design with Drones
Childhood vaccines play a vital role in social welfare, but in hard-to-reach regions, poor transportation, and a weak cold chain limit vaccine availability. This opens the door for the use of vaccine delivery by drones (uncrewed aerial vehicles, or UAVs) with their fast transportation and reliance on little or no infrastructure. In this paper, we study the problem of strategic multimodal vaccine distribution, which simultaneously determines the locations of local distribution centers, drone bases, and drone relay stations, while obeying the cold chain time limit and drone range. Two mathematical optimization models with complementary strengths are developed. The first model considers the vaccine travel time at the aggregate level with a compact formulation, but it can be too conservative in meeting the cold chain time limit. The second model is based on the layered network framework to track the vaccine flow and travel time associated with each origin-destination (OD) pair. It allows the number of transshipments and the number of drone stops in a vaccine flow path to be limited, which reflects practical operations and can be computationally advantageous. Both models are applied for vaccine distribution network design with two types of drones in Vanuatu as a case study. Solutions with drones using our parameter settings are shown to generate large savings, with differentiated roles for large and small drones. To generalize the empirical findings and examine the performance of our models, we conduct comprehensive computational experiments to assess the sensitivity of optimal solutions and performance metrics to key problem parameters. History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics. Funding: This work was supported by the Association for Supply Chain Management (ASCM) and the University of Missouri Research Board (UMSL Award 0059109). Supplemental Material: The online supplement is available at https://doi.org/10.1287/trsc.2023.1205 .
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.