Randa Harrat, G. Bourzama, H. Ouled-Haddar, B. Soumati
{"title":"阿尔及利亚东北部垃圾场根霉菌株对低密度聚乙烯的体外和体外生物降解","authors":"Randa Harrat, G. Bourzama, H. Ouled-Haddar, B. Soumati","doi":"10.32526/ennrj/20/202200026","DOIUrl":null,"url":null,"abstract":"Low density polyethylene (LDPE) is the most abundant non-degradable plastic waste. Widely used in packaging material, it represents a serious threat to all ecosystems. In the present study, a Rhizopus sp. fungal strain was isolated from soil of a landfill located in north-east Algeria and cultured on potato dextrose agar. The in vitro biodegradability of pieces of the same plastic bag (0.2, 0.4, and 0.6 g) was estimated in minimal liquid medium and on minimal solid medium. Furthermore, biodegradation of plastic bag pieces was examined in seawater, tap water and soil. The isolated Rhizopus sp. strain could degrade the plastic bag waste. The highest in vitro rate occurred in the minimal liquid medium for both the 0.4-g and 0.6-g pieces (a 20% decrease in weight). In natural media, the highest weight decrease was different depending on the substrate: 5% in seawater for the 0.2-g piece, 10% in tap water for the 0.4-g piece and 8% in soil for the 0.4-g piece. This strain could also form a biofilm in Malt Extract Broth (MEB). These results revealed that the isolated Rhizopus sp. strain has considerable biodegradative ability based on different measures.","PeriodicalId":11784,"journal":{"name":"Environment and Natural Resources Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Vitro and Ex Situ Biodegradation of Low-Density Polyethylene by a Rhizopus sp. Strain Isolated from a Local Dumpsite in North-East Algeria\",\"authors\":\"Randa Harrat, G. Bourzama, H. Ouled-Haddar, B. Soumati\",\"doi\":\"10.32526/ennrj/20/202200026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low density polyethylene (LDPE) is the most abundant non-degradable plastic waste. Widely used in packaging material, it represents a serious threat to all ecosystems. In the present study, a Rhizopus sp. fungal strain was isolated from soil of a landfill located in north-east Algeria and cultured on potato dextrose agar. The in vitro biodegradability of pieces of the same plastic bag (0.2, 0.4, and 0.6 g) was estimated in minimal liquid medium and on minimal solid medium. Furthermore, biodegradation of plastic bag pieces was examined in seawater, tap water and soil. The isolated Rhizopus sp. strain could degrade the plastic bag waste. The highest in vitro rate occurred in the minimal liquid medium for both the 0.4-g and 0.6-g pieces (a 20% decrease in weight). In natural media, the highest weight decrease was different depending on the substrate: 5% in seawater for the 0.2-g piece, 10% in tap water for the 0.4-g piece and 8% in soil for the 0.4-g piece. This strain could also form a biofilm in Malt Extract Broth (MEB). These results revealed that the isolated Rhizopus sp. strain has considerable biodegradative ability based on different measures.\",\"PeriodicalId\":11784,\"journal\":{\"name\":\"Environment and Natural Resources Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Natural Resources Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32526/ennrj/20/202200026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32526/ennrj/20/202200026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
In Vitro and Ex Situ Biodegradation of Low-Density Polyethylene by a Rhizopus sp. Strain Isolated from a Local Dumpsite in North-East Algeria
Low density polyethylene (LDPE) is the most abundant non-degradable plastic waste. Widely used in packaging material, it represents a serious threat to all ecosystems. In the present study, a Rhizopus sp. fungal strain was isolated from soil of a landfill located in north-east Algeria and cultured on potato dextrose agar. The in vitro biodegradability of pieces of the same plastic bag (0.2, 0.4, and 0.6 g) was estimated in minimal liquid medium and on minimal solid medium. Furthermore, biodegradation of plastic bag pieces was examined in seawater, tap water and soil. The isolated Rhizopus sp. strain could degrade the plastic bag waste. The highest in vitro rate occurred in the minimal liquid medium for both the 0.4-g and 0.6-g pieces (a 20% decrease in weight). In natural media, the highest weight decrease was different depending on the substrate: 5% in seawater for the 0.2-g piece, 10% in tap water for the 0.4-g piece and 8% in soil for the 0.4-g piece. This strain could also form a biofilm in Malt Extract Broth (MEB). These results revealed that the isolated Rhizopus sp. strain has considerable biodegradative ability based on different measures.
期刊介绍:
The Environment and Natural Resources Journal is a peer-reviewed journal, which provides insight scientific knowledge into the diverse dimensions of integrated environmental and natural resource management. The journal aims to provide a platform for exchange and distribution of the knowledge and cutting-edge research in the fields of environmental science and natural resource management to academicians, scientists and researchers. The journal accepts a varied array of manuscripts on all aspects of environmental science and natural resource management. The journal scope covers the integration of multidisciplinary sciences for prevention, control, treatment, environmental clean-up and restoration. The study of the existing or emerging problems of environment and natural resources in the region of Southeast Asia and the creation of novel knowledge and/or recommendations of mitigation measures for sustainable development policies are emphasized. The subject areas are diverse, but specific topics of interest include: -Biodiversity -Climate change -Detection and monitoring of polluted sources e.g., industry, mining -Disaster e.g., forest fire, flooding, earthquake, tsunami, or tidal wave -Ecological/Environmental modelling -Emerging contaminants/hazardous wastes investigation and remediation -Environmental dynamics e.g., coastal erosion, sea level rise -Environmental assessment tools, policy and management e.g., GIS, remote sensing, Environmental -Management System (EMS) -Environmental pollution and other novel solutions to pollution -Remediation technology of contaminated environments -Transboundary pollution -Waste and wastewater treatments and disposal technology