Raghuveer Negi, S. Sati, A. Rawat, T. Jayal, Vikram Sharma, Parvendra Kumar, G. Chauhan
{"title":"基于WSA和SPR技术的印度喜马偕尔邦吉里流域土壤侵蚀评价","authors":"Raghuveer Negi, S. Sati, A. Rawat, T. Jayal, Vikram Sharma, Parvendra Kumar, G. Chauhan","doi":"10.25303/1606da18044","DOIUrl":null,"url":null,"abstract":"A watershed is the result of several geomorphic processes such as weathering, erosion, degradation and aggradation which are influenced by several factors viz. tectonics, lithology, climate, landslides and mass wasting processes etc. In a tropical climate, watersheds contribute a significant amount of eroded material which is reflecting the impact of lithology, precipitation, tectonics, relief and anthropogenic activities. In the Himalayan region besides significant heterogeneity in lithology, stratigraphy, structure and tectonics, it is observed that variability is exhibited in climatic conditions over a small region. These factors contribute to the development of geomorphic landforms and are best studied in watersheds or river basins. In the present study, Giri Watershed (GW) is assessed to contemplate susceptibility to erosion for 66 sub-watersheds using geomorphic parameters. The prioritization of subwatersheds has been done using Weighted Sum Analysis (WSA) and Sediment Production Rate (SPR) methods. The quantitative analysis of subwatersheds is categorized into different priority classes viz. very high, high, moderate, low and very low, among which 27 subwatersheds have very high to high susceptibility to erosion.","PeriodicalId":50576,"journal":{"name":"Disaster Advances","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of soil erosion using WSA and SPR techniques for Giri watershed, Himachal Pradesh, NW Himalaya, India\",\"authors\":\"Raghuveer Negi, S. Sati, A. Rawat, T. Jayal, Vikram Sharma, Parvendra Kumar, G. Chauhan\",\"doi\":\"10.25303/1606da18044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A watershed is the result of several geomorphic processes such as weathering, erosion, degradation and aggradation which are influenced by several factors viz. tectonics, lithology, climate, landslides and mass wasting processes etc. In a tropical climate, watersheds contribute a significant amount of eroded material which is reflecting the impact of lithology, precipitation, tectonics, relief and anthropogenic activities. In the Himalayan region besides significant heterogeneity in lithology, stratigraphy, structure and tectonics, it is observed that variability is exhibited in climatic conditions over a small region. These factors contribute to the development of geomorphic landforms and are best studied in watersheds or river basins. In the present study, Giri Watershed (GW) is assessed to contemplate susceptibility to erosion for 66 sub-watersheds using geomorphic parameters. The prioritization of subwatersheds has been done using Weighted Sum Analysis (WSA) and Sediment Production Rate (SPR) methods. The quantitative analysis of subwatersheds is categorized into different priority classes viz. very high, high, moderate, low and very low, among which 27 subwatersheds have very high to high susceptibility to erosion.\",\"PeriodicalId\":50576,\"journal\":{\"name\":\"Disaster Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Disaster Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25303/1606da18044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disaster Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25303/1606da18044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Assessment of soil erosion using WSA and SPR techniques for Giri watershed, Himachal Pradesh, NW Himalaya, India
A watershed is the result of several geomorphic processes such as weathering, erosion, degradation and aggradation which are influenced by several factors viz. tectonics, lithology, climate, landslides and mass wasting processes etc. In a tropical climate, watersheds contribute a significant amount of eroded material which is reflecting the impact of lithology, precipitation, tectonics, relief and anthropogenic activities. In the Himalayan region besides significant heterogeneity in lithology, stratigraphy, structure and tectonics, it is observed that variability is exhibited in climatic conditions over a small region. These factors contribute to the development of geomorphic landforms and are best studied in watersheds or river basins. In the present study, Giri Watershed (GW) is assessed to contemplate susceptibility to erosion for 66 sub-watersheds using geomorphic parameters. The prioritization of subwatersheds has been done using Weighted Sum Analysis (WSA) and Sediment Production Rate (SPR) methods. The quantitative analysis of subwatersheds is categorized into different priority classes viz. very high, high, moderate, low and very low, among which 27 subwatersheds have very high to high susceptibility to erosion.