J. Sujana, N. J. Vignesh, N. Hynes, D. Jebaraj, R. Sankaranarayanan, J. S. Kumar
{"title":"基于微磨蚀的无钻孔牙科牙釉质去除率的估计","authors":"J. Sujana, N. J. Vignesh, N. Hynes, D. Jebaraj, R. Sankaranarayanan, J. S. Kumar","doi":"10.5604/01.3001.0053.8507","DOIUrl":null,"url":null,"abstract":"Drill less dentistry is painless, riskless, soundless and heatless and is very suitable for dental-related concerns where children are the most affected fraternity. Removing enamel from the teeth at the affected region by conventional drilling mechanism is challenging. The processed region is filled using amalgam or other sources for the occupation. The proceedings are a painful experience for the patients due to heat generation while drilling, which also induces vibrations and related noises. There are higher possibilities for tissue damage and disturbances in the unaffected regions. Air-abrasion-based drill-less dentistry handles such problems in a novel way and provides a comparatively pleasant treatment experience to patients.The enamel removal rate influences the drill-less dentistry as it empowers to predict the quantum of material that can be abraded while executing the process. The mathematical expression of the enamel removal rate has been estimated based on the basic laws of physics and assumptions.The current work exhibits mathematical modelling to predict the enamel removal. The expression also reveals that the velocity, density and mass flow rate of abrasive particles has a crucial role in deciding the rate of enamel removal from the tooth. The present mathematical expression provides beneficial inputs to the research fraternity in the dental field.The current mathematical expression has arrived through basic laws of physics and assumptions. The enamel removal rate is estimated using an analytical model, and the current mathematical expression can be improvised through fine-tuning fine. The present preliminary studies could be helpful in developing an accurate predictive model in future.The present research supports drill-less dentistry and provides a mathematical solution in terms of derived formulations in predicting the enamel removal rate, as enamel removal rate plays an essential role in drill-less dentistry.The mathematical expression facilitates the problem handling more practically and efficiently. The mathematical expression is helpful in studying and deciding the processing conditions such as stream velocity, particle density and mass flow rate on effective enamel removal rate from the tooth structure.","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of enamel removal rate in micro-abrasion based drill-less dentistry\",\"authors\":\"J. Sujana, N. J. Vignesh, N. Hynes, D. Jebaraj, R. Sankaranarayanan, J. S. Kumar\",\"doi\":\"10.5604/01.3001.0053.8507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drill less dentistry is painless, riskless, soundless and heatless and is very suitable for dental-related concerns where children are the most affected fraternity. Removing enamel from the teeth at the affected region by conventional drilling mechanism is challenging. The processed region is filled using amalgam or other sources for the occupation. The proceedings are a painful experience for the patients due to heat generation while drilling, which also induces vibrations and related noises. There are higher possibilities for tissue damage and disturbances in the unaffected regions. Air-abrasion-based drill-less dentistry handles such problems in a novel way and provides a comparatively pleasant treatment experience to patients.The enamel removal rate influences the drill-less dentistry as it empowers to predict the quantum of material that can be abraded while executing the process. The mathematical expression of the enamel removal rate has been estimated based on the basic laws of physics and assumptions.The current work exhibits mathematical modelling to predict the enamel removal. The expression also reveals that the velocity, density and mass flow rate of abrasive particles has a crucial role in deciding the rate of enamel removal from the tooth. The present mathematical expression provides beneficial inputs to the research fraternity in the dental field.The current mathematical expression has arrived through basic laws of physics and assumptions. The enamel removal rate is estimated using an analytical model, and the current mathematical expression can be improvised through fine-tuning fine. The present preliminary studies could be helpful in developing an accurate predictive model in future.The present research supports drill-less dentistry and provides a mathematical solution in terms of derived formulations in predicting the enamel removal rate, as enamel removal rate plays an essential role in drill-less dentistry.The mathematical expression facilitates the problem handling more practically and efficiently. The mathematical expression is helpful in studying and deciding the processing conditions such as stream velocity, particle density and mass flow rate on effective enamel removal rate from the tooth structure.\",\"PeriodicalId\":8297,\"journal\":{\"name\":\"Archives of materials science and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of materials science and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0053.8507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of materials science and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0053.8507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Estimation of enamel removal rate in micro-abrasion based drill-less dentistry
Drill less dentistry is painless, riskless, soundless and heatless and is very suitable for dental-related concerns where children are the most affected fraternity. Removing enamel from the teeth at the affected region by conventional drilling mechanism is challenging. The processed region is filled using amalgam or other sources for the occupation. The proceedings are a painful experience for the patients due to heat generation while drilling, which also induces vibrations and related noises. There are higher possibilities for tissue damage and disturbances in the unaffected regions. Air-abrasion-based drill-less dentistry handles such problems in a novel way and provides a comparatively pleasant treatment experience to patients.The enamel removal rate influences the drill-less dentistry as it empowers to predict the quantum of material that can be abraded while executing the process. The mathematical expression of the enamel removal rate has been estimated based on the basic laws of physics and assumptions.The current work exhibits mathematical modelling to predict the enamel removal. The expression also reveals that the velocity, density and mass flow rate of abrasive particles has a crucial role in deciding the rate of enamel removal from the tooth. The present mathematical expression provides beneficial inputs to the research fraternity in the dental field.The current mathematical expression has arrived through basic laws of physics and assumptions. The enamel removal rate is estimated using an analytical model, and the current mathematical expression can be improvised through fine-tuning fine. The present preliminary studies could be helpful in developing an accurate predictive model in future.The present research supports drill-less dentistry and provides a mathematical solution in terms of derived formulations in predicting the enamel removal rate, as enamel removal rate plays an essential role in drill-less dentistry.The mathematical expression facilitates the problem handling more practically and efficiently. The mathematical expression is helpful in studying and deciding the processing conditions such as stream velocity, particle density and mass flow rate on effective enamel removal rate from the tooth structure.