{"title":"库存环境下的增材制造战略生产工艺设计","authors":"P. C. Chua, S. K. Moon, Y. Ng, Manel Lopez","doi":"10.1115/1.4063285","DOIUrl":null,"url":null,"abstract":"\n With the development and gradual maturity of additive manufacturing (AM) over the years, AM has reached a stage where implementation into a conventional production system becomes possible. With AM suitable for small volume of highly customized production, there are various ways of implementing AM in a conventional production line. The aim of this paper is to present a strategic design approach of implementing AM with conventional manufacturing in a complementary manner for parallel processing of production orders of large quantities in a make-to-stock environment. By assuming that a single machine in conventional manufacturing can be operated using AM, splitting of production orders is allowed. Therefore production can be conducted by both conventional and AM processes simultaneously, with the latter being able to produce various make-to-stock parts in a single build. A generic algorithm with a scheduling and rule-based heuristic for part allocation on build plate of AM process is used to solve a multi-objective implementation problem of AM with conventional manufacturing, with cost, scheduling and sustainability being the considered performance measures. By obtaining a knee-point solution using varying numbers of population size and generation number, an experiment involving an industry case study of implementing fused deposition modelling (FDM) process with injection moulding process shows the greatest impact, i.e., increase, in cost. Except for material efficiency, improvements are shown in scheduling and carbon footprint objectives.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategic Production Process Design with Additive Manufacturing in a Make-to-stock Environment\",\"authors\":\"P. C. Chua, S. K. Moon, Y. Ng, Manel Lopez\",\"doi\":\"10.1115/1.4063285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n With the development and gradual maturity of additive manufacturing (AM) over the years, AM has reached a stage where implementation into a conventional production system becomes possible. With AM suitable for small volume of highly customized production, there are various ways of implementing AM in a conventional production line. The aim of this paper is to present a strategic design approach of implementing AM with conventional manufacturing in a complementary manner for parallel processing of production orders of large quantities in a make-to-stock environment. By assuming that a single machine in conventional manufacturing can be operated using AM, splitting of production orders is allowed. Therefore production can be conducted by both conventional and AM processes simultaneously, with the latter being able to produce various make-to-stock parts in a single build. A generic algorithm with a scheduling and rule-based heuristic for part allocation on build plate of AM process is used to solve a multi-objective implementation problem of AM with conventional manufacturing, with cost, scheduling and sustainability being the considered performance measures. By obtaining a knee-point solution using varying numbers of population size and generation number, an experiment involving an industry case study of implementing fused deposition modelling (FDM) process with injection moulding process shows the greatest impact, i.e., increase, in cost. Except for material efficiency, improvements are shown in scheduling and carbon footprint objectives.\",\"PeriodicalId\":16299,\"journal\":{\"name\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063285\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063285","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Strategic Production Process Design with Additive Manufacturing in a Make-to-stock Environment
With the development and gradual maturity of additive manufacturing (AM) over the years, AM has reached a stage where implementation into a conventional production system becomes possible. With AM suitable for small volume of highly customized production, there are various ways of implementing AM in a conventional production line. The aim of this paper is to present a strategic design approach of implementing AM with conventional manufacturing in a complementary manner for parallel processing of production orders of large quantities in a make-to-stock environment. By assuming that a single machine in conventional manufacturing can be operated using AM, splitting of production orders is allowed. Therefore production can be conducted by both conventional and AM processes simultaneously, with the latter being able to produce various make-to-stock parts in a single build. A generic algorithm with a scheduling and rule-based heuristic for part allocation on build plate of AM process is used to solve a multi-objective implementation problem of AM with conventional manufacturing, with cost, scheduling and sustainability being the considered performance measures. By obtaining a knee-point solution using varying numbers of population size and generation number, an experiment involving an industry case study of implementing fused deposition modelling (FDM) process with injection moulding process shows the greatest impact, i.e., increase, in cost. Except for material efficiency, improvements are shown in scheduling and carbon footprint objectives.
期刊介绍:
Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining