从伯努利种群中抽样的Kiefer-Weiss问题的计算方法

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY Sequential Analysis-Design Methods and Applications Pub Date : 2021-10-10 DOI:10.1080/07474946.2022.2070212
A. Novikov, Andrei Novikov, Fahil Farkhshatov
{"title":"从伯努利种群中抽样的Kiefer-Weiss问题的计算方法","authors":"A. Novikov, Andrei Novikov, Fahil Farkhshatov","doi":"10.1080/07474946.2022.2070212","DOIUrl":null,"url":null,"abstract":"Abstract We present a computational approach to the solution of the Kiefer-Weiss problem. Algorithms for construction of the optimal sampling plans and evaluation of their performance are proposed. In the particular case of Bernoulli observations, the proposed algorithms are implemented in the form of R program code. Using the developed computer program, we numerically compare the optimal tests with the respective sequential probability ratio test (SPRT) and the fixed sample size test for a wide range of hypothesized values and type I and type II errors. The results are compared with those of D. Freeman and L. Weiss (Journal of the American Statistical Association, 59, 1964). The R source code for the algorithms of construction of optimal sampling plans and evaluation of their characteristics is available at https://github.com/tosinabase/Kiefer-Weiss.","PeriodicalId":48879,"journal":{"name":"Sequential Analysis-Design Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A computational approach to the Kiefer-Weiss problem for sampling from a Bernoulli population\",\"authors\":\"A. Novikov, Andrei Novikov, Fahil Farkhshatov\",\"doi\":\"10.1080/07474946.2022.2070212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a computational approach to the solution of the Kiefer-Weiss problem. Algorithms for construction of the optimal sampling plans and evaluation of their performance are proposed. In the particular case of Bernoulli observations, the proposed algorithms are implemented in the form of R program code. Using the developed computer program, we numerically compare the optimal tests with the respective sequential probability ratio test (SPRT) and the fixed sample size test for a wide range of hypothesized values and type I and type II errors. The results are compared with those of D. Freeman and L. Weiss (Journal of the American Statistical Association, 59, 1964). The R source code for the algorithms of construction of optimal sampling plans and evaluation of their characteristics is available at https://github.com/tosinabase/Kiefer-Weiss.\",\"PeriodicalId\":48879,\"journal\":{\"name\":\"Sequential Analysis-Design Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sequential Analysis-Design Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07474946.2022.2070212\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis-Design Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2022.2070212","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

摘要

摘要我们提出了一种求解Kiefer-Weiss问题的计算方法。提出了最优抽样计划的构造算法及其性能评估算法。在伯努利观测的特殊情况下,所提出的算法以R程序代码的形式实现。使用开发的计算机程序,我们对各种假设值以及I型和II型误差的最优检验与相应的序列概率比检验(SPRT)和固定样本量检验进行了数值比较。将结果与D.Freeman和L.Weiss(《美国统计协会杂志》,1964年第59期)的结果进行了比较。用于构建最佳采样计划及其特性评估的算法的R源代码可在https://github.com/tosinabase/Kiefer-Weiss.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A computational approach to the Kiefer-Weiss problem for sampling from a Bernoulli population
Abstract We present a computational approach to the solution of the Kiefer-Weiss problem. Algorithms for construction of the optimal sampling plans and evaluation of their performance are proposed. In the particular case of Bernoulli observations, the proposed algorithms are implemented in the form of R program code. Using the developed computer program, we numerically compare the optimal tests with the respective sequential probability ratio test (SPRT) and the fixed sample size test for a wide range of hypothesized values and type I and type II errors. The results are compared with those of D. Freeman and L. Weiss (Journal of the American Statistical Association, 59, 1964). The R source code for the algorithms of construction of optimal sampling plans and evaluation of their characteristics is available at https://github.com/tosinabase/Kiefer-Weiss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
20
期刊介绍: The purpose of Sequential Analysis is to contribute to theoretical and applied aspects of sequential methodologies in all areas of statistical science. Published papers highlight the development of new and important sequential approaches. Interdisciplinary articles that emphasize the methodology of practical value to applied researchers and statistical consultants are highly encouraged. Papers that cover contemporary areas of applications including animal abundance, bioequivalence, communication science, computer simulations, data mining, directional data, disease mapping, environmental sampling, genome, imaging, microarrays, networking, parallel processing, pest management, sonar detection, spatial statistics, tracking, and engineering are deemed especially important. Of particular value are expository review articles that critically synthesize broad-based statistical issues. Papers on case-studies are also considered. All papers are refereed.
期刊最新文献
Distribution of number of observations required to obtain a cover for the support of a uniform distribution Bayesian and non-Bayesian inference for a general family of distributions based on simple step-stress life test using TRV model under type II censoring Two-stage estimation of the combination of location and scale parameter of the exponential distribution under the constraint of bounded risk per unit cost index Comparison of Gini indices using sequential approach: Application to the U.S. Small Business Administration data An ARL-unbiased modified chart for monitoring autoregressive counts with geometric marginal distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1