Miguel Angel García-Castro, F. Díaz-Sánchez, J. A. Galicia-Aguilar, Esmeralda Vidal-Robles
{"title":"3-甲基戊二酸和3,3-二甲基戊二酸酐形成的标准摩尔焓","authors":"Miguel Angel García-Castro, F. Díaz-Sánchez, J. A. Galicia-Aguilar, Esmeralda Vidal-Robles","doi":"10.31349/revmexfis.69.051701","DOIUrl":null,"url":null,"abstract":"In this research, both the standard molar enthalpy of formation in the crystalline phase and in the gas phase of 3-methylglutaric anhydride was calculated from experimental data. The temperature and enthalpy of fusion, as well as the molar heat capacity in solid phase was calculated by differential scanning calorimetry; the molar enthalpy of sublimation at 298.15 K by the Knudsen effusion method, the molar enthalpy of vaporization at 298.15 K by thermogravimetric analysis, and the standard massic combustion energy by combustion adiabatic calorimetry. Since 3,3-dimethylglutaric anhydride presented crystal transitions (with endothermic points at 352.76 K, 356.98 K and 397.15 K), some of its thermochemical properties were estimated from the functional group-contribution methods proposed by Benson, Gani and Naef and from application of Machine Learning based models.","PeriodicalId":21538,"journal":{"name":"Revista Mexicana De Fisica","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Standard molar enthalpies of formation of 3-methylglutaric and 3,3-dimethylglutaric anhydrides\",\"authors\":\"Miguel Angel García-Castro, F. Díaz-Sánchez, J. A. Galicia-Aguilar, Esmeralda Vidal-Robles\",\"doi\":\"10.31349/revmexfis.69.051701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, both the standard molar enthalpy of formation in the crystalline phase and in the gas phase of 3-methylglutaric anhydride was calculated from experimental data. The temperature and enthalpy of fusion, as well as the molar heat capacity in solid phase was calculated by differential scanning calorimetry; the molar enthalpy of sublimation at 298.15 K by the Knudsen effusion method, the molar enthalpy of vaporization at 298.15 K by thermogravimetric analysis, and the standard massic combustion energy by combustion adiabatic calorimetry. Since 3,3-dimethylglutaric anhydride presented crystal transitions (with endothermic points at 352.76 K, 356.98 K and 397.15 K), some of its thermochemical properties were estimated from the functional group-contribution methods proposed by Benson, Gani and Naef and from application of Machine Learning based models.\",\"PeriodicalId\":21538,\"journal\":{\"name\":\"Revista Mexicana De Fisica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mexicana De Fisica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.31349/revmexfis.69.051701\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana De Fisica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.31349/revmexfis.69.051701","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Standard molar enthalpies of formation of 3-methylglutaric and 3,3-dimethylglutaric anhydrides
In this research, both the standard molar enthalpy of formation in the crystalline phase and in the gas phase of 3-methylglutaric anhydride was calculated from experimental data. The temperature and enthalpy of fusion, as well as the molar heat capacity in solid phase was calculated by differential scanning calorimetry; the molar enthalpy of sublimation at 298.15 K by the Knudsen effusion method, the molar enthalpy of vaporization at 298.15 K by thermogravimetric analysis, and the standard massic combustion energy by combustion adiabatic calorimetry. Since 3,3-dimethylglutaric anhydride presented crystal transitions (with endothermic points at 352.76 K, 356.98 K and 397.15 K), some of its thermochemical properties were estimated from the functional group-contribution methods proposed by Benson, Gani and Naef and from application of Machine Learning based models.
期刊介绍:
Durante los últimos años, los responsables de la Revista Mexicana de Física, la Revista Mexicana de Física E y la Revista Mexicana de Física S, hemos realizado esfuerzos para fortalecer la presencia de estas publicaciones en nuestra página Web ( http://rmf.smf.mx).