采用定制的热处理策略提高渐进成形板材的成形性能

IF 4.2 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Advances in Manufacturing Pub Date : 2023-02-03 DOI:10.1007/s40436-022-00431-z
Hao Yuan, Yan-Le Li, Yuan-Yu Liu, Gang-Lin Zhao, Fang-Yi Li
{"title":"采用定制的热处理策略提高渐进成形板材的成形性能","authors":"Hao Yuan,&nbsp;Yan-Le Li,&nbsp;Yuan-Yu Liu,&nbsp;Gang-Lin Zhao,&nbsp;Fang-Yi Li","doi":"10.1007/s40436-022-00431-z","DOIUrl":null,"url":null,"abstract":"<div><p>Although incremental sheet forming (ISF) is an efficient way to manufacture customized parts, the forming performance and geometric accuracy of formed parts need to be improved to meet industrial application. One feasible solution for these problems is to adopt proper heat treatment strategies for the sheet material both before and during the forming process. In this paper, the effects of heat treatment before forming and heat-assisted forming on the formability and performance of formed parts were experimentally investigated. First, TA1 sheets were heat-treated at different temperatures before forming, and then the sheets were incrementally formed into the target shape with variable angles at different temperatures. After heat treatment, the strength of sheets was decreased due to the occurrence of recrystallization and the growth of grains. Meanwhile, the surface quality of formed parts was also improved with pre-heat treatment before forming. During the heat-assisted forming process, the sheet was softened and the deformation resistance was reduced with the increase of temperature. Therefore, the axial forming force was decreased obviously and the formability of the sheet was increased obviously. Furthermore, by adopting both heat treatment and heat-assisted forming, it was found that the forming force could be further reduced and the formability of the sheet and surface quality could be further improved. As for geometric accuracy, heat treatment has a good effect on improving it, while heat-assisted forming has adverse effect. These findings provide an effective heat treatment strategy for improving the geometric accuracy and surface quality of the incrementally formed parts with lower forming force.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"11 2","pages":"264 - 279"},"PeriodicalIF":4.2000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving the forming performance of incrementally formed sheet parts with customized heat treatment strategies\",\"authors\":\"Hao Yuan,&nbsp;Yan-Le Li,&nbsp;Yuan-Yu Liu,&nbsp;Gang-Lin Zhao,&nbsp;Fang-Yi Li\",\"doi\":\"10.1007/s40436-022-00431-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although incremental sheet forming (ISF) is an efficient way to manufacture customized parts, the forming performance and geometric accuracy of formed parts need to be improved to meet industrial application. One feasible solution for these problems is to adopt proper heat treatment strategies for the sheet material both before and during the forming process. In this paper, the effects of heat treatment before forming and heat-assisted forming on the formability and performance of formed parts were experimentally investigated. First, TA1 sheets were heat-treated at different temperatures before forming, and then the sheets were incrementally formed into the target shape with variable angles at different temperatures. After heat treatment, the strength of sheets was decreased due to the occurrence of recrystallization and the growth of grains. Meanwhile, the surface quality of formed parts was also improved with pre-heat treatment before forming. During the heat-assisted forming process, the sheet was softened and the deformation resistance was reduced with the increase of temperature. Therefore, the axial forming force was decreased obviously and the formability of the sheet was increased obviously. Furthermore, by adopting both heat treatment and heat-assisted forming, it was found that the forming force could be further reduced and the formability of the sheet and surface quality could be further improved. As for geometric accuracy, heat treatment has a good effect on improving it, while heat-assisted forming has adverse effect. These findings provide an effective heat treatment strategy for improving the geometric accuracy and surface quality of the incrementally formed parts with lower forming force.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"11 2\",\"pages\":\"264 - 279\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-022-00431-z\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-022-00431-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

摘要

增量板料成形是一种有效的定制零件制造方法,但为了满足工业应用,成形件的成形性能和几何精度有待提高。解决这些问题的一种可行的方法是在成形前和成形过程中对板材材料采取适当的热处理策略。实验研究了成形前热处理和热辅助成形对成形件成形性能和性能的影响。首先对TA1板材在成型前进行不同温度的热处理,然后在不同温度下逐渐成形成不同角度的目标形状。热处理后,由于再结晶的发生和晶粒的长大,使板材的强度降低。同时,通过成形前的预热处理,也提高了成形件的表面质量。在热辅助成形过程中,随着温度的升高,板料软化,抗变形能力降低。因此,轴向成形力明显减小,板材的成形性能明显提高。同时采用热处理和热辅助成形,可进一步降低成形力,提高板材的成形性能和表面质量。在几何精度方面,热处理对提高几何精度有良好的效果,而热辅助成形则有不利的影响。研究结果为在低成形力条件下提高增量成形零件的几何精度和表面质量提供了有效的热处理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the forming performance of incrementally formed sheet parts with customized heat treatment strategies

Although incremental sheet forming (ISF) is an efficient way to manufacture customized parts, the forming performance and geometric accuracy of formed parts need to be improved to meet industrial application. One feasible solution for these problems is to adopt proper heat treatment strategies for the sheet material both before and during the forming process. In this paper, the effects of heat treatment before forming and heat-assisted forming on the formability and performance of formed parts were experimentally investigated. First, TA1 sheets were heat-treated at different temperatures before forming, and then the sheets were incrementally formed into the target shape with variable angles at different temperatures. After heat treatment, the strength of sheets was decreased due to the occurrence of recrystallization and the growth of grains. Meanwhile, the surface quality of formed parts was also improved with pre-heat treatment before forming. During the heat-assisted forming process, the sheet was softened and the deformation resistance was reduced with the increase of temperature. Therefore, the axial forming force was decreased obviously and the formability of the sheet was increased obviously. Furthermore, by adopting both heat treatment and heat-assisted forming, it was found that the forming force could be further reduced and the formability of the sheet and surface quality could be further improved. As for geometric accuracy, heat treatment has a good effect on improving it, while heat-assisted forming has adverse effect. These findings provide an effective heat treatment strategy for improving the geometric accuracy and surface quality of the incrementally formed parts with lower forming force.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Manufacturing
Advances in Manufacturing Materials Science-Polymers and Plastics
CiteScore
9.10
自引率
3.80%
发文量
274
期刊介绍: As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field. All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.
期刊最新文献
Grinding defect characteristics and removal mechanism of unidirectional Cf/SiC composites The effect of the slope angle and the magnetic field on the surface quality of nickel-based superalloys in blasting erosion arc machining Study on the mechanism of burr formation in ultrasonic vibration-assisted honing 9Cr18MoV valve sleeve Flexible modification and texture prediction and control method of internal gearing power honing tooth surface ·AI-enabled intelligent cockpit proactive affective interaction: middle-level feature fusion dual-branch deep learning network for driver emotion recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1