{"title":"机器学习模型在阿尔茨海默病诊断中的表现","authors":"Siddhartha Kumar Arjaria, Abhishek Singh Rathore, Dhananjay Bisen, Sanjib Bhattacharyya","doi":"10.1007/s40745-022-00452-2","DOIUrl":null,"url":null,"abstract":"<div><p>In recent times, various machine learning approaches have been widely employed for effective diagnosis and prediction of diseases like cancer, thyroid, Covid-19, etc. Likewise, Alzheimer’s (AD) is also one progressive malady that destroys memory and cognitive function over time. Unfortunately, there are no dedicated AI-based solutions for diagnoses of AD to go hand in hand with medical diagnosis, even though multiple factors contribute to the diagnosis, making AI a very viable supplementary diagnostic solution. This paper reports an endeavor to apply various machine learning algorithms like SGD, k-Nearest Neighbors, Logistic Regression, Decision tree, Random Forest, AdaBoost, Neural Network, SVM, and Naïve Bayes on the dataset of affected victims to diagnose Alzheimer’s disease. Longitudinal collections of subjects from OASIS dataset have been used for prediction. Moreover, some feature selection and dimension reduction methods like Information Gain, Information Gain Ratio, Gini index, Chi-Squared, and PCA are applied to rank different factors and identify the optimum number of factors from the dataset for disease diagnosis. Furthermore, performance is evaluated of each classifier in terms of ROC-AUC, accuracy, F1 score, recall, and precision as well as included comparative analysis between algorithms. Our study suggests that approximately 90% classification accuracy is observed under top-rated four features CDR, SES, nWBV, and EDUC.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performances of Machine Learning Models for Diagnosis of Alzheimer’s Disease\",\"authors\":\"Siddhartha Kumar Arjaria, Abhishek Singh Rathore, Dhananjay Bisen, Sanjib Bhattacharyya\",\"doi\":\"10.1007/s40745-022-00452-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent times, various machine learning approaches have been widely employed for effective diagnosis and prediction of diseases like cancer, thyroid, Covid-19, etc. Likewise, Alzheimer’s (AD) is also one progressive malady that destroys memory and cognitive function over time. Unfortunately, there are no dedicated AI-based solutions for diagnoses of AD to go hand in hand with medical diagnosis, even though multiple factors contribute to the diagnosis, making AI a very viable supplementary diagnostic solution. This paper reports an endeavor to apply various machine learning algorithms like SGD, k-Nearest Neighbors, Logistic Regression, Decision tree, Random Forest, AdaBoost, Neural Network, SVM, and Naïve Bayes on the dataset of affected victims to diagnose Alzheimer’s disease. Longitudinal collections of subjects from OASIS dataset have been used for prediction. Moreover, some feature selection and dimension reduction methods like Information Gain, Information Gain Ratio, Gini index, Chi-Squared, and PCA are applied to rank different factors and identify the optimum number of factors from the dataset for disease diagnosis. Furthermore, performance is evaluated of each classifier in terms of ROC-AUC, accuracy, F1 score, recall, and precision as well as included comparative analysis between algorithms. Our study suggests that approximately 90% classification accuracy is observed under top-rated four features CDR, SES, nWBV, and EDUC.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-022-00452-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-022-00452-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
Performances of Machine Learning Models for Diagnosis of Alzheimer’s Disease
In recent times, various machine learning approaches have been widely employed for effective diagnosis and prediction of diseases like cancer, thyroid, Covid-19, etc. Likewise, Alzheimer’s (AD) is also one progressive malady that destroys memory and cognitive function over time. Unfortunately, there are no dedicated AI-based solutions for diagnoses of AD to go hand in hand with medical diagnosis, even though multiple factors contribute to the diagnosis, making AI a very viable supplementary diagnostic solution. This paper reports an endeavor to apply various machine learning algorithms like SGD, k-Nearest Neighbors, Logistic Regression, Decision tree, Random Forest, AdaBoost, Neural Network, SVM, and Naïve Bayes on the dataset of affected victims to diagnose Alzheimer’s disease. Longitudinal collections of subjects from OASIS dataset have been used for prediction. Moreover, some feature selection and dimension reduction methods like Information Gain, Information Gain Ratio, Gini index, Chi-Squared, and PCA are applied to rank different factors and identify the optimum number of factors from the dataset for disease diagnosis. Furthermore, performance is evaluated of each classifier in terms of ROC-AUC, accuracy, F1 score, recall, and precision as well as included comparative analysis between algorithms. Our study suggests that approximately 90% classification accuracy is observed under top-rated four features CDR, SES, nWBV, and EDUC.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.