E. Houghton, K. Bevandick, D. Neilsen, K. Hannam, L. Nelson
{"title":"加拿大奥卡纳根山谷5个果园采后亏缺灌溉对甜樱桃(Prunus avium)的影响:Ⅱ。表型、抗寒性、果实产量和品质","authors":"E. Houghton, K. Bevandick, D. Neilsen, K. Hannam, L. Nelson","doi":"10.1139/cjps-2022-0201","DOIUrl":null,"url":null,"abstract":"Abstract Irrigated agriculture in semi-arid regions is expected to increase in the future, which puts greater demands on scarce water resources. Sustainable irrigation strategies in semi-arid regions will support agricultural resilience to climatic change. The response of “Sweetheart”/Mazzard sweet cherry trees (Prunus avium L.) to postharvest deficit irrigation (PDI), as a water conservation method, was studied over three seasons (2019–2022) in the semi-arid Okanagan Valley of British Columbia, at five commercial orchards. The following irrigation treatments were applied; (i) a control of full irrigation, irrigated according to conventional growers’ practice at each orchard, (ii) PDI-30: 27%–33% reduction in irrigation volume, after harvest (67%–73% of control), and (iii) PDI-50: 47%–52% reduction in irrigation volume, after harvest (48–53% of control). Spring phenology (the timing of flower bud development, from side green to full bloom), flower bud moisture content and cold hardiness, and fruit yield and quality (before and after cold storage and shelf-life conditions) were assessed to determine if PDI altered fruit development over the subsequent growing season. Neither PDI-30 nor PDI-50 caused changes in the timing of flower bud phenology, cold hardiness or moisture content relative to the control. PDI treatments also had no effect on fruit yield or fruit quality at harvest or after storage and shelf-life conditions. These results suggest PDI could be used to reduce irrigation water use in semi-arid regions, like the Okanagan Valley, without affecting sweet cherry production or fruit quality.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"184 - 200"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of postharvest deficit irrigation on sweet cherry (Prunus avium) in five Okanagan Valley, Canada, orchards: II. Phenology, cold hardiness, fruit yield, and quality\",\"authors\":\"E. Houghton, K. Bevandick, D. Neilsen, K. Hannam, L. Nelson\",\"doi\":\"10.1139/cjps-2022-0201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Irrigated agriculture in semi-arid regions is expected to increase in the future, which puts greater demands on scarce water resources. Sustainable irrigation strategies in semi-arid regions will support agricultural resilience to climatic change. The response of “Sweetheart”/Mazzard sweet cherry trees (Prunus avium L.) to postharvest deficit irrigation (PDI), as a water conservation method, was studied over three seasons (2019–2022) in the semi-arid Okanagan Valley of British Columbia, at five commercial orchards. The following irrigation treatments were applied; (i) a control of full irrigation, irrigated according to conventional growers’ practice at each orchard, (ii) PDI-30: 27%–33% reduction in irrigation volume, after harvest (67%–73% of control), and (iii) PDI-50: 47%–52% reduction in irrigation volume, after harvest (48–53% of control). Spring phenology (the timing of flower bud development, from side green to full bloom), flower bud moisture content and cold hardiness, and fruit yield and quality (before and after cold storage and shelf-life conditions) were assessed to determine if PDI altered fruit development over the subsequent growing season. Neither PDI-30 nor PDI-50 caused changes in the timing of flower bud phenology, cold hardiness or moisture content relative to the control. PDI treatments also had no effect on fruit yield or fruit quality at harvest or after storage and shelf-life conditions. These results suggest PDI could be used to reduce irrigation water use in semi-arid regions, like the Okanagan Valley, without affecting sweet cherry production or fruit quality.\",\"PeriodicalId\":9530,\"journal\":{\"name\":\"Canadian Journal of Plant Science\",\"volume\":\"103 1\",\"pages\":\"184 - 200\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjps-2022-0201\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjps-2022-0201","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
Effects of postharvest deficit irrigation on sweet cherry (Prunus avium) in five Okanagan Valley, Canada, orchards: II. Phenology, cold hardiness, fruit yield, and quality
Abstract Irrigated agriculture in semi-arid regions is expected to increase in the future, which puts greater demands on scarce water resources. Sustainable irrigation strategies in semi-arid regions will support agricultural resilience to climatic change. The response of “Sweetheart”/Mazzard sweet cherry trees (Prunus avium L.) to postharvest deficit irrigation (PDI), as a water conservation method, was studied over three seasons (2019–2022) in the semi-arid Okanagan Valley of British Columbia, at five commercial orchards. The following irrigation treatments were applied; (i) a control of full irrigation, irrigated according to conventional growers’ practice at each orchard, (ii) PDI-30: 27%–33% reduction in irrigation volume, after harvest (67%–73% of control), and (iii) PDI-50: 47%–52% reduction in irrigation volume, after harvest (48–53% of control). Spring phenology (the timing of flower bud development, from side green to full bloom), flower bud moisture content and cold hardiness, and fruit yield and quality (before and after cold storage and shelf-life conditions) were assessed to determine if PDI altered fruit development over the subsequent growing season. Neither PDI-30 nor PDI-50 caused changes in the timing of flower bud phenology, cold hardiness or moisture content relative to the control. PDI treatments also had no effect on fruit yield or fruit quality at harvest or after storage and shelf-life conditions. These results suggest PDI could be used to reduce irrigation water use in semi-arid regions, like the Okanagan Valley, without affecting sweet cherry production or fruit quality.
期刊介绍:
Published since 1957, the Canadian Journal of Plant Science is a bimonthly journal that contains new research on all aspects of plant science relevant to continental climate agriculture, including plant production and management (grain, forage, industrial, and alternative crops), horticulture (fruit, vegetable, ornamental, greenhouse, and alternative crops), and pest management (entomology, plant pathology, and weed science). Cross-disciplinary research in the application of technology, plant breeding, genetics, physiology, biotechnology, microbiology, soil management, economics, meteorology, post-harvest biology, and plant production systems is also published. Research that makes a significant contribution to the advancement of knowledge of crop, horticulture, and weed sciences (e.g., drought or stress resistance), but not directly applicable to the environmental regions of Canadian agriculture, may also be considered. The Journal also publishes reviews, letters to the editor, the abstracts of technical papers presented at the meetings of the sponsoring societies, and occasionally conference proceedings.