Aysegul Atasoy-Zeybek, Alan Ivković, Alan Ivković, Tahsin Beyzadeoglu, A. Onal, Christopher H. Evans, G. T. Kose
{"title":"活人骨颗粒对间充质干细胞成骨分化的旁分泌作用。","authors":"Aysegul Atasoy-Zeybek, Alan Ivković, Alan Ivković, Tahsin Beyzadeoglu, A. Onal, Christopher H. Evans, G. T. Kose","doi":"10.22203/eCM.v038a02","DOIUrl":null,"url":null,"abstract":"Bone autografting remains the clinical model of choice for resolving problematic fractures. The precise mechanisms through which the autograft promotes bone healing are unknown. The present study examined the hypothesis that cells within the autograft secrete osteogenic factors promoting the differentiation of mesenchymal stem cells (MSCs) into osteoblasts. Particles of human bone (\"chips\") were recovered at the time of joint replacement surgery and placed in culture. Then, conditioned media were added to cultures of human, adipose-derived MSCs under both basal and osteogenic conditions. Contrary to expectation, medium conditioned by bone chips reduced the expression of alkaline phosphatase and strongly inhibited mineral deposition by MSCs cultured in osteogenic medium. Real time PCR revealed the inhibition of collagen type I alpha 1 chain (Col1A1) and osteopontin (OPN) expression. These data indicated that the factors secreted by bone chips inhibited the osteogenic differentiation of MSCs. However, in late cultures, bone morphogenetic protein-2 (BMP-2) expression was stimulated, suggesting the possibility of a delayed, secondary osteogenic effect.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"38 1","pages":"14-22"},"PeriodicalIF":3.2000,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.22203/eCM.v038a02","citationCount":"1","resultStr":"{\"title\":\"Paracrine effects of living human bone particles on the osteogenic differentiation of mesenchymal stem cells.\",\"authors\":\"Aysegul Atasoy-Zeybek, Alan Ivković, Alan Ivković, Tahsin Beyzadeoglu, A. Onal, Christopher H. Evans, G. T. Kose\",\"doi\":\"10.22203/eCM.v038a02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bone autografting remains the clinical model of choice for resolving problematic fractures. The precise mechanisms through which the autograft promotes bone healing are unknown. The present study examined the hypothesis that cells within the autograft secrete osteogenic factors promoting the differentiation of mesenchymal stem cells (MSCs) into osteoblasts. Particles of human bone (\\\"chips\\\") were recovered at the time of joint replacement surgery and placed in culture. Then, conditioned media were added to cultures of human, adipose-derived MSCs under both basal and osteogenic conditions. Contrary to expectation, medium conditioned by bone chips reduced the expression of alkaline phosphatase and strongly inhibited mineral deposition by MSCs cultured in osteogenic medium. Real time PCR revealed the inhibition of collagen type I alpha 1 chain (Col1A1) and osteopontin (OPN) expression. These data indicated that the factors secreted by bone chips inhibited the osteogenic differentiation of MSCs. However, in late cultures, bone morphogenetic protein-2 (BMP-2) expression was stimulated, suggesting the possibility of a delayed, secondary osteogenic effect.\",\"PeriodicalId\":11849,\"journal\":{\"name\":\"European cells & materials\",\"volume\":\"38 1\",\"pages\":\"14-22\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2019-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.22203/eCM.v038a02\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European cells & materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22203/eCM.v038a02\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European cells & materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22203/eCM.v038a02","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 1
摘要
自体骨移植仍然是解决问题骨折的首选临床模式。自体移植物促进骨愈合的确切机制尚不清楚。本研究验证了自体移植物内细胞分泌成骨因子促进间充质干细胞向成骨细胞分化的假设。在关节置换手术时回收人骨颗粒(“芯片”)并置于培养中。然后,在基础和成骨条件下,将条件培养基添加到人脂肪来源的MSCs培养中。与预期相反,骨片调节的培养基降低了碱性磷酸酶的表达,并强烈抑制了成骨培养基中培养的MSCs的矿物质沉积。Real - time PCR结果显示,I型胶原α 1链(Col1A1)和骨桥蛋白(OPN)的表达受到抑制。这些数据表明骨芯片分泌的因子抑制了MSCs的成骨分化。然而,在后期培养中,骨形态发生蛋白-2 (BMP-2)的表达受到刺激,表明可能存在延迟的继发性成骨作用。
Paracrine effects of living human bone particles on the osteogenic differentiation of mesenchymal stem cells.
Bone autografting remains the clinical model of choice for resolving problematic fractures. The precise mechanisms through which the autograft promotes bone healing are unknown. The present study examined the hypothesis that cells within the autograft secrete osteogenic factors promoting the differentiation of mesenchymal stem cells (MSCs) into osteoblasts. Particles of human bone ("chips") were recovered at the time of joint replacement surgery and placed in culture. Then, conditioned media were added to cultures of human, adipose-derived MSCs under both basal and osteogenic conditions. Contrary to expectation, medium conditioned by bone chips reduced the expression of alkaline phosphatase and strongly inhibited mineral deposition by MSCs cultured in osteogenic medium. Real time PCR revealed the inhibition of collagen type I alpha 1 chain (Col1A1) and osteopontin (OPN) expression. These data indicated that the factors secreted by bone chips inhibited the osteogenic differentiation of MSCs. However, in late cultures, bone morphogenetic protein-2 (BMP-2) expression was stimulated, suggesting the possibility of a delayed, secondary osteogenic effect.
期刊介绍:
eCM provides an interdisciplinary forum for publication of preclinical research in the musculoskeletal field (Trauma, Maxillofacial (including dental), Spine and Orthopaedics).
The clinical relevance of the work must be briefly mentioned within the abstract, and in more detail in the paper. Poor abstracts which do not concisely cover the paper contents will not be sent for review. Incremental steps in research will not be entertained by eCM journal.Cross-disciplinary papers that go across our scope areas are welcomed.