Kelly A. Muething, F. Tomas, G. Waldbusser, B. Dumbauld
{"title":"在边缘:评估美国华盛顿威拉帕湾太平洋牡蛎养殖和鳗草之间的鱼类栖息地利用","authors":"Kelly A. Muething, F. Tomas, G. Waldbusser, B. Dumbauld","doi":"10.3354/AEI00381","DOIUrl":null,"url":null,"abstract":"Estuaries are subject to diverse anthropogenic stressors, such as shellfish aquaculture, which involve extensive use of estuarine tidelands. Pacific oyster Crassostrea gigas aquaculture is a century-old practice in US West Coast estuaries that contributes significantly to the regional culture and economy. Native eelgrass Zostera marina also commonly occurs in intertidal areas where oyster aquaculture is practiced. Eelgrass is federally protected in the USA as ‘essential fish habitat’, restricting aquaculture activities within or near eelgrass. To contribute scientific information useful for management decisions, we sought to compare fish habitat use of oyster aquaculture and eelgrass, as well as the edges between these 2 habitats, in Willapa Bay, Washington, USA. Furthermore, given a recent shift towards off-bottom culture methods, in part to protect seagrasses, long-line and on-bottom oyster aquaculture habitats were compared. A combination of direct (underwater video, minnow traps) and indirect (predation tethering units, eelgrass surveys) methods were employed to characterize differences in fish habitat use. Eelgrass density declined within both aquaculture habitats but less so within long-line aquaculture. Most fish species in our study used long-line oyster aquaculture and eelgrass habitats similarly with minimal edge effects, and on-bottom aquaculture was used less than either of the other 2 habitat types. These results are consistent with previously observed positive relationships between fish abundance and vertical habitat structure, but also reveal species-specific behavior; larger mesopredators like Pacific staghorn sculpins were sighted more often in aquaculture than in interior eelgrass habitats.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"12 1","pages":"541-557"},"PeriodicalIF":2.2000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On the edge: assessing fish habitat use across the boundary between Pacific oyster aquaculture and eelgrass in Willapa Bay, Washington, USA\",\"authors\":\"Kelly A. Muething, F. Tomas, G. Waldbusser, B. Dumbauld\",\"doi\":\"10.3354/AEI00381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estuaries are subject to diverse anthropogenic stressors, such as shellfish aquaculture, which involve extensive use of estuarine tidelands. Pacific oyster Crassostrea gigas aquaculture is a century-old practice in US West Coast estuaries that contributes significantly to the regional culture and economy. Native eelgrass Zostera marina also commonly occurs in intertidal areas where oyster aquaculture is practiced. Eelgrass is federally protected in the USA as ‘essential fish habitat’, restricting aquaculture activities within or near eelgrass. To contribute scientific information useful for management decisions, we sought to compare fish habitat use of oyster aquaculture and eelgrass, as well as the edges between these 2 habitats, in Willapa Bay, Washington, USA. Furthermore, given a recent shift towards off-bottom culture methods, in part to protect seagrasses, long-line and on-bottom oyster aquaculture habitats were compared. A combination of direct (underwater video, minnow traps) and indirect (predation tethering units, eelgrass surveys) methods were employed to characterize differences in fish habitat use. Eelgrass density declined within both aquaculture habitats but less so within long-line aquaculture. Most fish species in our study used long-line oyster aquaculture and eelgrass habitats similarly with minimal edge effects, and on-bottom aquaculture was used less than either of the other 2 habitat types. These results are consistent with previously observed positive relationships between fish abundance and vertical habitat structure, but also reveal species-specific behavior; larger mesopredators like Pacific staghorn sculpins were sighted more often in aquaculture than in interior eelgrass habitats.\",\"PeriodicalId\":8376,\"journal\":{\"name\":\"Aquaculture Environment Interactions\",\"volume\":\"12 1\",\"pages\":\"541-557\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Environment Interactions\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3354/AEI00381\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Environment Interactions","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/AEI00381","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
On the edge: assessing fish habitat use across the boundary between Pacific oyster aquaculture and eelgrass in Willapa Bay, Washington, USA
Estuaries are subject to diverse anthropogenic stressors, such as shellfish aquaculture, which involve extensive use of estuarine tidelands. Pacific oyster Crassostrea gigas aquaculture is a century-old practice in US West Coast estuaries that contributes significantly to the regional culture and economy. Native eelgrass Zostera marina also commonly occurs in intertidal areas where oyster aquaculture is practiced. Eelgrass is federally protected in the USA as ‘essential fish habitat’, restricting aquaculture activities within or near eelgrass. To contribute scientific information useful for management decisions, we sought to compare fish habitat use of oyster aquaculture and eelgrass, as well as the edges between these 2 habitats, in Willapa Bay, Washington, USA. Furthermore, given a recent shift towards off-bottom culture methods, in part to protect seagrasses, long-line and on-bottom oyster aquaculture habitats were compared. A combination of direct (underwater video, minnow traps) and indirect (predation tethering units, eelgrass surveys) methods were employed to characterize differences in fish habitat use. Eelgrass density declined within both aquaculture habitats but less so within long-line aquaculture. Most fish species in our study used long-line oyster aquaculture and eelgrass habitats similarly with minimal edge effects, and on-bottom aquaculture was used less than either of the other 2 habitat types. These results are consistent with previously observed positive relationships between fish abundance and vertical habitat structure, but also reveal species-specific behavior; larger mesopredators like Pacific staghorn sculpins were sighted more often in aquaculture than in interior eelgrass habitats.
期刊介绍:
AEI presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may be concerned with interactions between aquaculture and the environment from local to ecosystem scales, at all levels of organisation and investigation. Areas covered include:
-Pollution and nutrient inputs; bio-accumulation and impacts of chemical compounds used in aquaculture.
-Effects on benthic and pelagic assemblages or processes that are related to aquaculture activities.
-Interactions of wild fauna (invertebrates, fishes, birds, mammals) with aquaculture activities; genetic impacts on wild populations.
-Parasite and pathogen interactions between farmed and wild stocks.
-Comparisons of the environmental effects of traditional and organic aquaculture.
-Introductions of alien species; escape and intentional releases (seeding) of cultured organisms into the wild.
-Effects of capture-based aquaculture (ranching).
-Interactions of aquaculture installations with biofouling organisms and consequences of biofouling control measures.
-Integrated multi-trophic aquaculture; comparisons of re-circulation and ‘open’ systems.
-Effects of climate change and environmental variability on aquaculture activities.
-Modelling of aquaculture–environment interactions; assessment of carrying capacity.
-Interactions between aquaculture and other industries (e.g. tourism, fisheries, transport).
-Policy and practice of aquaculture regulation directed towards environmental management; site selection, spatial planning, Integrated Coastal Zone Management, and eco-ethics.