{"title":"新型光催化剂CuAlO2/ZSM-12&35完全去除油馏分中氮化合物的响应面优化建模","authors":"M. Rahmati, R. Fazaeli, M. G. Saravani, R. Ghiasi","doi":"10.22036/PCR.2020.226264.1754","DOIUrl":null,"url":null,"abstract":"In this study, immobilized CuAlO2 onto the ZSM-12&35 composite was prepared and used as a photocatalyst to remove N-containing oil pollutants (Carbazole) through advanced oxidation. In this method, acetone is used as a reaction solvent that can be partially converted to fuel oxygenates compounds (Octane enhancers) through an aldol condensation reaction. Photocatalyst characterization was performed using X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray Spectroscopy (EDS), Mapping, and BET/BJH (Brunauer-Emmett-Teller & Barrett-Joyner-Halenda) techniques. The effect of operating parameters (contaminant concentration, catalyst dosage, and pH of the solution) on the efficiency of carbazole removal (model oil) was investigated through the RSM methodology. The removal products are identified by Gas Chromatography (GC-MAS) technique. The results indicated complete elimination of carbazole under mild conditions as well as the in-situ formation of typical fuel oxygenates compounds through aldol condensation among solvent molecules. Accordingly, this new protocol can be utilized to refine fuel products accompanied by enhancing their octane numbers.","PeriodicalId":20084,"journal":{"name":"Physical Chemistry Research","volume":"8 1","pages":"585-608"},"PeriodicalIF":1.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization and Modeling of Complete Removal of N-Compounds from Oil Cut Using Response Surface Methodology (RSM) by CuAlO2/ZSM-12&35 as a New Photocatalyst\",\"authors\":\"M. Rahmati, R. Fazaeli, M. G. Saravani, R. Ghiasi\",\"doi\":\"10.22036/PCR.2020.226264.1754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, immobilized CuAlO2 onto the ZSM-12&35 composite was prepared and used as a photocatalyst to remove N-containing oil pollutants (Carbazole) through advanced oxidation. In this method, acetone is used as a reaction solvent that can be partially converted to fuel oxygenates compounds (Octane enhancers) through an aldol condensation reaction. Photocatalyst characterization was performed using X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray Spectroscopy (EDS), Mapping, and BET/BJH (Brunauer-Emmett-Teller & Barrett-Joyner-Halenda) techniques. The effect of operating parameters (contaminant concentration, catalyst dosage, and pH of the solution) on the efficiency of carbazole removal (model oil) was investigated through the RSM methodology. The removal products are identified by Gas Chromatography (GC-MAS) technique. The results indicated complete elimination of carbazole under mild conditions as well as the in-situ formation of typical fuel oxygenates compounds through aldol condensation among solvent molecules. Accordingly, this new protocol can be utilized to refine fuel products accompanied by enhancing their octane numbers.\",\"PeriodicalId\":20084,\"journal\":{\"name\":\"Physical Chemistry Research\",\"volume\":\"8 1\",\"pages\":\"585-608\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22036/PCR.2020.226264.1754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22036/PCR.2020.226264.1754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization and Modeling of Complete Removal of N-Compounds from Oil Cut Using Response Surface Methodology (RSM) by CuAlO2/ZSM-12&35 as a New Photocatalyst
In this study, immobilized CuAlO2 onto the ZSM-12&35 composite was prepared and used as a photocatalyst to remove N-containing oil pollutants (Carbazole) through advanced oxidation. In this method, acetone is used as a reaction solvent that can be partially converted to fuel oxygenates compounds (Octane enhancers) through an aldol condensation reaction. Photocatalyst characterization was performed using X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray Spectroscopy (EDS), Mapping, and BET/BJH (Brunauer-Emmett-Teller & Barrett-Joyner-Halenda) techniques. The effect of operating parameters (contaminant concentration, catalyst dosage, and pH of the solution) on the efficiency of carbazole removal (model oil) was investigated through the RSM methodology. The removal products are identified by Gas Chromatography (GC-MAS) technique. The results indicated complete elimination of carbazole under mild conditions as well as the in-situ formation of typical fuel oxygenates compounds through aldol condensation among solvent molecules. Accordingly, this new protocol can be utilized to refine fuel products accompanied by enhancing their octane numbers.
期刊介绍:
The motivation for this new journal is the tremendous increasing of useful articles in the field of Physical Chemistry and the related subjects in recent years, and the need of communication between Physical Chemists, Physicists and Biophysicists. We attempt to establish this fruitful communication and quick publication. High quality original papers in English dealing with experimental, theoretical and applied research related to physics and chemistry are welcomed. This journal accepts your report for publication as a regular article, review, and Letter. Review articles discussing specific areas of physical chemistry of current chemical or physical importance are also published. Subjects of Interest: Thermodynamics, Statistical Mechanics, Statistical Thermodynamics, Molecular Spectroscopy, Quantum Chemistry, Computational Chemistry, Physical Chemistry of Life Sciences, Surface Chemistry, Catalysis, Physical Chemistry of Electrochemistry, Kinetics, Nanochemistry and Nanophysics, Liquid Crystals, Ionic Liquid, Photochemistry, Experimental article of Physical chemistry. Mathematical Chemistry.