{"title":"有氧运动模拟白藜芦醇对血管内皮细胞衰老的预防作用","authors":"Ji-Seok Kim","doi":"10.15857/ksep.2023.00136","DOIUrl":null,"url":null,"abstract":"PURPOSE: Regular exercise has been shown to have anti-aging effects on the vascular system by improving endothelial function and diminishing oxidative stress. However, adherence to an exercise regimen can be difficult for some individuals, particularly those with limited mobility. This study investigated the effects of resveratrol as an exercise mimetic for preventing and improving oxidative stressinduced senescence in vascular endothelial cells.METHODS: Cultured human umbilical vein endothelial cells were used to investigate the reversal effects of laminar shear stress and the protective effects of resveratrol on oxidative stress-induced premature senescence. Senescence was estimated using SA-β-gal staining and western blot analysis, whereas oxidative stress levels were evaluated using MitoSOX staining. Matrigel tube formation and scratch assays were also performed to assess endothelial angiogenic and migration functions.RESULTS: The study showed that laminar shear stress could partly normalize premature endothelial senescence. Resveratrol pretreatment attenuated reactive oxygen species production and prevented senescence in H2O2-induced premature aging. Additionally, resveratrol contributed to maintaining endothelial cells’ angiogenic and migratory functions.CONCLUSIONS: This study demonstrated that laminar shear stress can mitigate the effects of oxidative stress-induced premature senescence. Resveratrol may be a potential substitute for exercise to prevent age-related damage to the endothelium by increasing resistance to oxidative stress and improving endothelial function.","PeriodicalId":36291,"journal":{"name":"Exercise Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerobic Exercise-Mimetic Effects of Resveratrol on the Prevention of Vascular Endothelial Senescence\",\"authors\":\"Ji-Seok Kim\",\"doi\":\"10.15857/ksep.2023.00136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PURPOSE: Regular exercise has been shown to have anti-aging effects on the vascular system by improving endothelial function and diminishing oxidative stress. However, adherence to an exercise regimen can be difficult for some individuals, particularly those with limited mobility. This study investigated the effects of resveratrol as an exercise mimetic for preventing and improving oxidative stressinduced senescence in vascular endothelial cells.METHODS: Cultured human umbilical vein endothelial cells were used to investigate the reversal effects of laminar shear stress and the protective effects of resveratrol on oxidative stress-induced premature senescence. Senescence was estimated using SA-β-gal staining and western blot analysis, whereas oxidative stress levels were evaluated using MitoSOX staining. Matrigel tube formation and scratch assays were also performed to assess endothelial angiogenic and migration functions.RESULTS: The study showed that laminar shear stress could partly normalize premature endothelial senescence. Resveratrol pretreatment attenuated reactive oxygen species production and prevented senescence in H2O2-induced premature aging. Additionally, resveratrol contributed to maintaining endothelial cells’ angiogenic and migratory functions.CONCLUSIONS: This study demonstrated that laminar shear stress can mitigate the effects of oxidative stress-induced premature senescence. Resveratrol may be a potential substitute for exercise to prevent age-related damage to the endothelium by increasing resistance to oxidative stress and improving endothelial function.\",\"PeriodicalId\":36291,\"journal\":{\"name\":\"Exercise Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exercise Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15857/ksep.2023.00136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exercise Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15857/ksep.2023.00136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
Aerobic Exercise-Mimetic Effects of Resveratrol on the Prevention of Vascular Endothelial Senescence
PURPOSE: Regular exercise has been shown to have anti-aging effects on the vascular system by improving endothelial function and diminishing oxidative stress. However, adherence to an exercise regimen can be difficult for some individuals, particularly those with limited mobility. This study investigated the effects of resveratrol as an exercise mimetic for preventing and improving oxidative stressinduced senescence in vascular endothelial cells.METHODS: Cultured human umbilical vein endothelial cells were used to investigate the reversal effects of laminar shear stress and the protective effects of resveratrol on oxidative stress-induced premature senescence. Senescence was estimated using SA-β-gal staining and western blot analysis, whereas oxidative stress levels were evaluated using MitoSOX staining. Matrigel tube formation and scratch assays were also performed to assess endothelial angiogenic and migration functions.RESULTS: The study showed that laminar shear stress could partly normalize premature endothelial senescence. Resveratrol pretreatment attenuated reactive oxygen species production and prevented senescence in H2O2-induced premature aging. Additionally, resveratrol contributed to maintaining endothelial cells’ angiogenic and migratory functions.CONCLUSIONS: This study demonstrated that laminar shear stress can mitigate the effects of oxidative stress-induced premature senescence. Resveratrol may be a potential substitute for exercise to prevent age-related damage to the endothelium by increasing resistance to oxidative stress and improving endothelial function.