自适应增强随机森林算法在测井资料岩石物理自动解释中的应用

IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Acta Geodaetica et Geophysica Pub Date : 2022-09-05 DOI:10.1007/s40328-022-00385-5
V. Srivardhan
{"title":"自适应增强随机森林算法在测井资料岩石物理自动解释中的应用","authors":"V. Srivardhan","doi":"10.1007/s40328-022-00385-5","DOIUrl":null,"url":null,"abstract":"<div><p>The power of Machine Learning is demonstrated for automatic interpretation of well logs and determining reservoir properties for volume of shale, porosity, and water saturation respectively for tight clastic sequences. Random Forest algorithms are reputed for their efficiency as they belong to a class of algorithms called ensemble methods, which are traditionally seen as weak learners, but can be transformed into strong performers and they promise to deliver highly accurate results. The study area is located offshore Australia in the Poseidon and Crown fields situated in the Browse Basin, which are gas fields in tight complex clastic reservoirs. There are 5 wells used in this study with one well manually interpreted which is subsequently used in developing a machine learning model which predicts the output for the other 4 wells. The basic open hole logs namely Natural gamma ray, Resistivity, Neutron Porosity, Bulk Density, P-wave and S-wave sonic travel-time, are used in interpretation. One of the wells has a missing S-wave travel-time log which was also predicted by developing a Random Forest Machine Learning model. The results indicate a very robust improvement in performance when Random Forest algorithm was combined with Adaptive Boosting when interpreting the well logs. The training accuracy using Random Forest alone was 98.21%, but testing was 77.62% which suggested over-fitting by the Random Forest model. The Adaptive Boosting of the Random Forest algorithm resulted in the overall training accuracy of 99.40% and an overall testing accuracy of 97.03%, indicating a drastic improvement in performance. S-wave travel-time log was predicted by preparing a training set consisting of Natural gamma ray, Resistivity, Neutron Porosity, Bulk Density, and P-wave travel-time logs for the 4 wells using Random Forest which gave a training accuracy of 99.79% and a testing accuracy of 98.54%. Machine learning algorithms can be successfully applied for interpreting well log data in complex sedimentary environment and their performance can be drastically improved using Adaptive Boosting.</p></div>","PeriodicalId":48965,"journal":{"name":"Acta Geodaetica et Geophysica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adaptive boosting of random forest algorithm for automatic petrophysical interpretation of well logs\",\"authors\":\"V. Srivardhan\",\"doi\":\"10.1007/s40328-022-00385-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The power of Machine Learning is demonstrated for automatic interpretation of well logs and determining reservoir properties for volume of shale, porosity, and water saturation respectively for tight clastic sequences. Random Forest algorithms are reputed for their efficiency as they belong to a class of algorithms called ensemble methods, which are traditionally seen as weak learners, but can be transformed into strong performers and they promise to deliver highly accurate results. The study area is located offshore Australia in the Poseidon and Crown fields situated in the Browse Basin, which are gas fields in tight complex clastic reservoirs. There are 5 wells used in this study with one well manually interpreted which is subsequently used in developing a machine learning model which predicts the output for the other 4 wells. The basic open hole logs namely Natural gamma ray, Resistivity, Neutron Porosity, Bulk Density, P-wave and S-wave sonic travel-time, are used in interpretation. One of the wells has a missing S-wave travel-time log which was also predicted by developing a Random Forest Machine Learning model. The results indicate a very robust improvement in performance when Random Forest algorithm was combined with Adaptive Boosting when interpreting the well logs. The training accuracy using Random Forest alone was 98.21%, but testing was 77.62% which suggested over-fitting by the Random Forest model. The Adaptive Boosting of the Random Forest algorithm resulted in the overall training accuracy of 99.40% and an overall testing accuracy of 97.03%, indicating a drastic improvement in performance. S-wave travel-time log was predicted by preparing a training set consisting of Natural gamma ray, Resistivity, Neutron Porosity, Bulk Density, and P-wave travel-time logs for the 4 wells using Random Forest which gave a training accuracy of 99.79% and a testing accuracy of 98.54%. Machine learning algorithms can be successfully applied for interpreting well log data in complex sedimentary environment and their performance can be drastically improved using Adaptive Boosting.</p></div>\",\"PeriodicalId\":48965,\"journal\":{\"name\":\"Acta Geodaetica et Geophysica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geodaetica et Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40328-022-00385-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodaetica et Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s40328-022-00385-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 4

摘要

机器学习在自动解释测井曲线和确定致密碎屑层的页岩体积、孔隙度和含水饱和度等储层特性方面的能力得到了证明。随机森林算法因其效率而闻名,因为它们属于一类称为集成方法的算法,传统上被视为弱学习者,但可以转化为强表演者,并且它们承诺提供高度准确的结果。研究区位于澳大利亚近海Browse盆地的Poseidon和Crown气田,为致密复杂碎屑岩储层气田。本研究中使用了5口井,其中一口井进行了人工解释,随后用于开发机器学习模型,预测其他4口井的产量。基本的裸眼测井资料,即自然伽马、电阻率、中子孔隙度、体积密度、纵波和s波声波传播时间,用于解释。其中一口井缺少s波走时日志,这也是通过开发随机森林机器学习模型预测的。结果表明,当随机森林算法与自适应增强算法相结合时,在解释测井曲线时,性能有了很大的提高。单独使用随机森林的训练准确率为98.21%,但测试准确率为77.62%,表明随机森林模型过度拟合。随机森林算法的Adaptive Boosting总体训练准确率达到99.40%,总体测试准确率达到97.03%,性能有了很大的提高。利用随机森林(Random Forest)对4口井的自然伽马射线、电阻率、中子孔隙度、体积密度和纵波走时测井曲线组成训练集,预测s波走时测井曲线,训练精度为99.79%,测试精度为98.54%。机器学习算法可以成功地应用于复杂沉积环境下的测井数据解释,使用自适应增强技术可以大大提高机器学习算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive boosting of random forest algorithm for automatic petrophysical interpretation of well logs

The power of Machine Learning is demonstrated for automatic interpretation of well logs and determining reservoir properties for volume of shale, porosity, and water saturation respectively for tight clastic sequences. Random Forest algorithms are reputed for their efficiency as they belong to a class of algorithms called ensemble methods, which are traditionally seen as weak learners, but can be transformed into strong performers and they promise to deliver highly accurate results. The study area is located offshore Australia in the Poseidon and Crown fields situated in the Browse Basin, which are gas fields in tight complex clastic reservoirs. There are 5 wells used in this study with one well manually interpreted which is subsequently used in developing a machine learning model which predicts the output for the other 4 wells. The basic open hole logs namely Natural gamma ray, Resistivity, Neutron Porosity, Bulk Density, P-wave and S-wave sonic travel-time, are used in interpretation. One of the wells has a missing S-wave travel-time log which was also predicted by developing a Random Forest Machine Learning model. The results indicate a very robust improvement in performance when Random Forest algorithm was combined with Adaptive Boosting when interpreting the well logs. The training accuracy using Random Forest alone was 98.21%, but testing was 77.62% which suggested over-fitting by the Random Forest model. The Adaptive Boosting of the Random Forest algorithm resulted in the overall training accuracy of 99.40% and an overall testing accuracy of 97.03%, indicating a drastic improvement in performance. S-wave travel-time log was predicted by preparing a training set consisting of Natural gamma ray, Resistivity, Neutron Porosity, Bulk Density, and P-wave travel-time logs for the 4 wells using Random Forest which gave a training accuracy of 99.79% and a testing accuracy of 98.54%. Machine learning algorithms can be successfully applied for interpreting well log data in complex sedimentary environment and their performance can be drastically improved using Adaptive Boosting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Geodaetica et Geophysica
Acta Geodaetica et Geophysica GEOCHEMISTRY & GEOPHYSICS-
CiteScore
3.10
自引率
7.10%
发文量
26
期刊介绍: The journal publishes original research papers in the field of geodesy and geophysics under headings: aeronomy and space physics, electromagnetic studies, geodesy and gravimetry, geodynamics, geomathematics, rock physics, seismology, solid earth physics, history. Papers dealing with problems of the Carpathian region and its surroundings are preferred. Similarly, papers on topics traditionally covered by Hungarian geodesists and geophysicists (e.g. robust estimations, geoid, EM properties of the Earth’s crust, geomagnetic pulsations and seismological risk) are especially welcome.
期刊最新文献
Selection of a calibration system for relative gravimeters and testing of the processing using the example of the Zhetygen calibration baseline in Kazakhstan A forwarding spoofing detection algorithm for Beidou navigation satellite system vulnerability Machine learning assisted model based petrographic classification: a case study from Bokaro coal field Spatial and temporal analysis of daily terrestrial water storage anomalies in China Enhancing landslide inventory mapping through Multi-SAR image analysis: a comprehensive examination of current landslide zones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1