{"title":"氢气添加量、涡流强度和当量比对甲烷-空气燃烧影响的数值研究","authors":"M. Elbayoumi, F. Garnier, P. Seers","doi":"10.1515/tjj-2021-0048","DOIUrl":null,"url":null,"abstract":"Abstract Hydrogen-blended fuel is a promising resource for future generations of gas turbine engines, due to its capability of reducing carbon-based emissions. This paper presents a numerical study to assess hydrogen-enriched combustion in a laboratory-scale burner operating at a high turbulence level and under lean and stoichiometric burning conditions. Moreover, a wide range of H2 (up to 90 %) is used for enriching CH4-air combustion in combination with two different swirl levels. The results show that a high swirl intensity results in shorter flames, due to the increased turbulent intensity, which reduces the flame surface area and uniformness the reacting zone. Besides, increasing swirl intensity further increase flame temperature for a given H2-blended fuel. Overall, the results suggest that high swirl intensity in combination to lean mixtures is favorable when using H2-blended fuel with high H2 concentrations. The simulation results also demonstrate that considering radiation heat loss is influential, as it yields a reduction of the outlet temperature by not less than 100 K, bringing down NO x emissions by half.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of the impact of hydrogen addition, swirl intensity and equivalence ratio on methane-air combustion\",\"authors\":\"M. Elbayoumi, F. Garnier, P. Seers\",\"doi\":\"10.1515/tjj-2021-0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hydrogen-blended fuel is a promising resource for future generations of gas turbine engines, due to its capability of reducing carbon-based emissions. This paper presents a numerical study to assess hydrogen-enriched combustion in a laboratory-scale burner operating at a high turbulence level and under lean and stoichiometric burning conditions. Moreover, a wide range of H2 (up to 90 %) is used for enriching CH4-air combustion in combination with two different swirl levels. The results show that a high swirl intensity results in shorter flames, due to the increased turbulent intensity, which reduces the flame surface area and uniformness the reacting zone. Besides, increasing swirl intensity further increase flame temperature for a given H2-blended fuel. Overall, the results suggest that high swirl intensity in combination to lean mixtures is favorable when using H2-blended fuel with high H2 concentrations. The simulation results also demonstrate that considering radiation heat loss is influential, as it yields a reduction of the outlet temperature by not less than 100 K, bringing down NO x emissions by half.\",\"PeriodicalId\":50284,\"journal\":{\"name\":\"International Journal of Turbo & Jet-Engines\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbo & Jet-Engines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/tjj-2021-0048\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2021-0048","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Numerical study of the impact of hydrogen addition, swirl intensity and equivalence ratio on methane-air combustion
Abstract Hydrogen-blended fuel is a promising resource for future generations of gas turbine engines, due to its capability of reducing carbon-based emissions. This paper presents a numerical study to assess hydrogen-enriched combustion in a laboratory-scale burner operating at a high turbulence level and under lean and stoichiometric burning conditions. Moreover, a wide range of H2 (up to 90 %) is used for enriching CH4-air combustion in combination with two different swirl levels. The results show that a high swirl intensity results in shorter flames, due to the increased turbulent intensity, which reduces the flame surface area and uniformness the reacting zone. Besides, increasing swirl intensity further increase flame temperature for a given H2-blended fuel. Overall, the results suggest that high swirl intensity in combination to lean mixtures is favorable when using H2-blended fuel with high H2 concentrations. The simulation results also demonstrate that considering radiation heat loss is influential, as it yields a reduction of the outlet temperature by not less than 100 K, bringing down NO x emissions by half.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.