DNA纳米管内MNP的折纸诱导排列

Rafati Adele, Zarrabi Ali, Gill Pooria
{"title":"DNA纳米管内MNP的折纸诱导排列","authors":"Rafati Adele, Zarrabi Ali, Gill Pooria","doi":"10.23937/2378-3664/1410031","DOIUrl":null,"url":null,"abstract":"Background: The advent of nanotubes in the nanotechnology world has led to significant advances in a number of biological and materials application, due to their structural properties such as the surface to volume ratio and potential to surface carrying or inside capsulation any materials. Among the various types of nanotubes, DNA nanotubes, due to their unique characteristics, such as precis controllability and programmability in shape/size/length/diameter and its biological origin compared to different types of nanomaterial, can be the suitable candidate for template patterning alignment and precise organization of nanoparticles at surface or into channel. These characteristics can be used in nanoelectronic devise or in the field of diagnostic nanobiosensores. Methods: Here, we report a new construction methodology for encapsulation of magnetic nanoparticles inside DNA nanotubes channel. Constructed-simultaneously encapsulation of magnetic nanoparticles into the large channel of this tubes leads to “pea-pod” particle alignment in nanotube channel. Results: Transmission electron microscopy and atomic force microscopy confirmed the fabrication of DNA nanotubes contained the magnetic nanoparticles inside the channel. Conclusion: These biohybrid nanomaterial would be proposed as the nanoarray platform in nanobiosensing devices.","PeriodicalId":91094,"journal":{"name":"International journal of medical nano research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Origami-Induced Alignment of MNP Inside of DNA Nanotubes\",\"authors\":\"Rafati Adele, Zarrabi Ali, Gill Pooria\",\"doi\":\"10.23937/2378-3664/1410031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The advent of nanotubes in the nanotechnology world has led to significant advances in a number of biological and materials application, due to their structural properties such as the surface to volume ratio and potential to surface carrying or inside capsulation any materials. Among the various types of nanotubes, DNA nanotubes, due to their unique characteristics, such as precis controllability and programmability in shape/size/length/diameter and its biological origin compared to different types of nanomaterial, can be the suitable candidate for template patterning alignment and precise organization of nanoparticles at surface or into channel. These characteristics can be used in nanoelectronic devise or in the field of diagnostic nanobiosensores. Methods: Here, we report a new construction methodology for encapsulation of magnetic nanoparticles inside DNA nanotubes channel. Constructed-simultaneously encapsulation of magnetic nanoparticles into the large channel of this tubes leads to “pea-pod” particle alignment in nanotube channel. Results: Transmission electron microscopy and atomic force microscopy confirmed the fabrication of DNA nanotubes contained the magnetic nanoparticles inside the channel. Conclusion: These biohybrid nanomaterial would be proposed as the nanoarray platform in nanobiosensing devices.\",\"PeriodicalId\":91094,\"journal\":{\"name\":\"International journal of medical nano research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of medical nano research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23937/2378-3664/1410031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of medical nano research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23937/2378-3664/1410031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

背景:纳米管的出现在纳米技术领域已经导致了许多生物和材料的应用显著进步,由于其结构特性,如表面体积比和潜在的表面携带或内部封装任何材料。在各种类型的纳米管中,DNA纳米管由于其独特的特性,如形状/大小/长度/直径的精确可控性和可编程性,以及与其他类型的纳米材料相比其生物起源,可以成为模板图案排列和纳米颗粒表面或通道精确组织的合适人选。这些特性可用于纳米电子器件或诊断纳米生物传感器领域。方法:本文报道了一种在DNA纳米管通道内封装磁性纳米颗粒的新方法。磁性纳米颗粒被同时构建封装到纳米管的大通道中,导致纳米管通道中的“豌豆荚”颗粒排列。结果:通过透射电子显微镜和原子力显微镜证实,制备出了含有磁性纳米颗粒的DNA纳米管。结论:这些生物杂化纳米材料可作为纳米传感器件的纳米阵列平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Origami-Induced Alignment of MNP Inside of DNA Nanotubes
Background: The advent of nanotubes in the nanotechnology world has led to significant advances in a number of biological and materials application, due to their structural properties such as the surface to volume ratio and potential to surface carrying or inside capsulation any materials. Among the various types of nanotubes, DNA nanotubes, due to their unique characteristics, such as precis controllability and programmability in shape/size/length/diameter and its biological origin compared to different types of nanomaterial, can be the suitable candidate for template patterning alignment and precise organization of nanoparticles at surface or into channel. These characteristics can be used in nanoelectronic devise or in the field of diagnostic nanobiosensores. Methods: Here, we report a new construction methodology for encapsulation of magnetic nanoparticles inside DNA nanotubes channel. Constructed-simultaneously encapsulation of magnetic nanoparticles into the large channel of this tubes leads to “pea-pod” particle alignment in nanotube channel. Results: Transmission electron microscopy and atomic force microscopy confirmed the fabrication of DNA nanotubes contained the magnetic nanoparticles inside the channel. Conclusion: These biohybrid nanomaterial would be proposed as the nanoarray platform in nanobiosensing devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Mesenchymal Stem Cell in Combination with Self-Assembled Functional Nanopeptide Gel to Promote Angiogenesis Possible Effect of Nano Characterization of COVID-19 on Infection and Causing Disease Therapeutic Application of Nanomaterials in the Management of Health Care: 'An Updated Review' Encapsulation of Alendronate in Chitosan based Polymeric Nanoparticles for Effective Management of Osteoporosis – Development to Release Kinetic Study Recent Trends in Nanoparticles Based Drug Delivery for Tuberculosis Treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1