晶粒尺寸对不同温度和应变速率下多晶纳米铜单轴拉伸行为的响应

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Multidiscipline Modeling in Materials and Structures Pub Date : 2023-03-21 DOI:10.1108/mmms-09-2022-0187
Rajat Kumar, M. K. Gupta, S. Rai, Vinay Panwar
{"title":"晶粒尺寸对不同温度和应变速率下多晶纳米铜单轴拉伸行为的响应","authors":"Rajat Kumar, M. K. Gupta, S. Rai, Vinay Panwar","doi":"10.1108/mmms-09-2022-0187","DOIUrl":null,"url":null,"abstract":"PurposeThe changes in tensile behavior of polycrystalline nanocopper lattice with changes in temperature, average grain size (AGS) and strain rate, have been explored. The existence of a critical AGS has also been observed which shows that the Hall–Petch relationship behaves inversely.Design/methodology/approachNanoscale deformation of polycrystalline nanocopper has been done in this study with the help of an embedded atom method (EAM) potential. Voronoi construction method has been employed for creating four polycrystals of nanocopper with different sizes. Statistical analysis has been used to examine the observations with emphasis on the polycrystal size effect on melting point temperature.FindingsThe study has found that the key stress values (i.e. elastic modulus, yield stress and ultimate tensile stress) are significantly influenced by the considered parameters. The increase in strain rate is observed to have an increasing impact on mechanical properties, whereas the increase in temperature degrades the mechanical properties. In-depth analysis of the deformation mechanism has been studied to deliver real-time visualization of grain boundary motion.Originality/valueThis study provides the relationship between required grain size variations for consecutive possible variations in mechanical properties and may help to reduce the trial processes in the synthesis of polycrystalline copper based on different temperatures and strain rates.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grain size responsive uniaxial tensile behavior of polycrystalline nanocopper under different temperatures and strain rates\",\"authors\":\"Rajat Kumar, M. K. Gupta, S. Rai, Vinay Panwar\",\"doi\":\"10.1108/mmms-09-2022-0187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe changes in tensile behavior of polycrystalline nanocopper lattice with changes in temperature, average grain size (AGS) and strain rate, have been explored. The existence of a critical AGS has also been observed which shows that the Hall–Petch relationship behaves inversely.Design/methodology/approachNanoscale deformation of polycrystalline nanocopper has been done in this study with the help of an embedded atom method (EAM) potential. Voronoi construction method has been employed for creating four polycrystals of nanocopper with different sizes. Statistical analysis has been used to examine the observations with emphasis on the polycrystal size effect on melting point temperature.FindingsThe study has found that the key stress values (i.e. elastic modulus, yield stress and ultimate tensile stress) are significantly influenced by the considered parameters. The increase in strain rate is observed to have an increasing impact on mechanical properties, whereas the increase in temperature degrades the mechanical properties. In-depth analysis of the deformation mechanism has been studied to deliver real-time visualization of grain boundary motion.Originality/valueThis study provides the relationship between required grain size variations for consecutive possible variations in mechanical properties and may help to reduce the trial processes in the synthesis of polycrystalline copper based on different temperatures and strain rates.\",\"PeriodicalId\":46760,\"journal\":{\"name\":\"Multidiscipline Modeling in Materials and Structures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multidiscipline Modeling in Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/mmms-09-2022-0187\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidiscipline Modeling in Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/mmms-09-2022-0187","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的探讨多晶纳米铜晶格的拉伸行为随温度、平均晶粒尺寸和应变速率的变化规律。我们还观察到临界AGS的存在,这表明Hall-Petch关系是相反的。本研究利用嵌入原子法(EAM)电位完成了多晶纳米铜的纳米级变形。采用Voronoi构造方法制备了四种不同尺寸的纳米铜多晶。用统计分析来检验观察结果,重点是多晶尺寸对熔点温度的影响。研究发现,关键应力值(即弹性模量、屈服应力和极限拉应力)受到所考虑参数的显著影响。应变速率的增加对力学性能的影响越来越大,而温度的升高使力学性能下降。深入分析了变形机理,实现了晶界运动的实时可视化。独创性/价值本研究提供了连续可能的力学性能变化所需的晶粒尺寸变化之间的关系,并可能有助于减少基于不同温度和应变速率合成多晶铜的试验过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grain size responsive uniaxial tensile behavior of polycrystalline nanocopper under different temperatures and strain rates
PurposeThe changes in tensile behavior of polycrystalline nanocopper lattice with changes in temperature, average grain size (AGS) and strain rate, have been explored. The existence of a critical AGS has also been observed which shows that the Hall–Petch relationship behaves inversely.Design/methodology/approachNanoscale deformation of polycrystalline nanocopper has been done in this study with the help of an embedded atom method (EAM) potential. Voronoi construction method has been employed for creating four polycrystals of nanocopper with different sizes. Statistical analysis has been used to examine the observations with emphasis on the polycrystal size effect on melting point temperature.FindingsThe study has found that the key stress values (i.e. elastic modulus, yield stress and ultimate tensile stress) are significantly influenced by the considered parameters. The increase in strain rate is observed to have an increasing impact on mechanical properties, whereas the increase in temperature degrades the mechanical properties. In-depth analysis of the deformation mechanism has been studied to deliver real-time visualization of grain boundary motion.Originality/valueThis study provides the relationship between required grain size variations for consecutive possible variations in mechanical properties and may help to reduce the trial processes in the synthesis of polycrystalline copper based on different temperatures and strain rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
60
期刊介绍: Multidiscipline Modeling in Materials and Structures is published by Emerald Group Publishing Limited from 2010
期刊最新文献
Feature-rich electronic properties of three-dimensional ternary compound: Li7P3S11 Influence of width-to-depth and effective length-to-depth ratio on shear strength of reinforced concrete slender beams without shear reinforcement: comparative analysis Optimizing surface roughness in soft pneumatic gripper fabricated via FDM: experimental investigation using Taguchi method Rheological model of cement-based material slurry with different water-cement ratio and temperature A numerical study on thermal deformation of through silicon via with electroplating defect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1