儿童术后疼痛的面部表情分类

Carolina Jiménez-Moreno, Jenny Kateryne Aristizábal-Nieto, O. Giraldo-Salazar
{"title":"儿童术后疼痛的面部表情分类","authors":"Carolina Jiménez-Moreno, Jenny Kateryne Aristizábal-Nieto, O. Giraldo-Salazar","doi":"10.14483/22484728.17425","DOIUrl":null,"url":null,"abstract":"There are certain difficulties in differentiating between children's facial expression related to pain and other stimuli. In addition, the limited communication ability of children in the preverbal stage leads to misdiagnosis when the child feels pain, for example, post-surgical conditions. In this article, a classification approach of facial expression of child pain is presented based on models of pre-trained convolutional neuronal networks from the study carried out in a Colombian hospital of level 4 (Hospital Universitario San Vicente Fundación), in the recovery areas of child surgery services. AlexNet and VGG (16, 19 and Face) networks are evaluated in the own dataset using the FLACC scale and their performances are compared in three experiments. The results show that the VGG-19 model achieves the best performance (92.9%) compared to the other networks. The effectiveness of the model and transfer learning for the classification of facial expression of child pain shows a promising solution for the assessment of post-surgical pain.","PeriodicalId":34191,"journal":{"name":"Vision Electronica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of Facial Expression of Post-Surgical Pain in Children\",\"authors\":\"Carolina Jiménez-Moreno, Jenny Kateryne Aristizábal-Nieto, O. Giraldo-Salazar\",\"doi\":\"10.14483/22484728.17425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are certain difficulties in differentiating between children's facial expression related to pain and other stimuli. In addition, the limited communication ability of children in the preverbal stage leads to misdiagnosis when the child feels pain, for example, post-surgical conditions. In this article, a classification approach of facial expression of child pain is presented based on models of pre-trained convolutional neuronal networks from the study carried out in a Colombian hospital of level 4 (Hospital Universitario San Vicente Fundación), in the recovery areas of child surgery services. AlexNet and VGG (16, 19 and Face) networks are evaluated in the own dataset using the FLACC scale and their performances are compared in three experiments. The results show that the VGG-19 model achieves the best performance (92.9%) compared to the other networks. The effectiveness of the model and transfer learning for the classification of facial expression of child pain shows a promising solution for the assessment of post-surgical pain.\",\"PeriodicalId\":34191,\"journal\":{\"name\":\"Vision Electronica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision Electronica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14483/22484728.17425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Electronica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14483/22484728.17425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在区分儿童与疼痛和其他刺激有关的面部表情方面存在一定的困难。此外,当孩子感到疼痛时,例如手术后的情况,言语前阶段儿童的沟通能力有限会导致误诊。在这篇文章中,基于哥伦比亚一家四级医院(圣维森特基金会大学医院)在儿童手术服务恢复区进行的研究中预先训练的卷积神经元网络模型,提出了一种儿童疼痛面部表情的分类方法。使用FLACC量表在自己的数据集中评估了AlexNet和VGG(16,19和Face)网络,并在三个实验中比较了它们的性能。结果表明,与其他网络相比,VGG-19模型实现了最好的性能(92.9%)。该模型和迁移学习在儿童疼痛面部表情分类中的有效性为评估术后疼痛提供了一个很有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Facial Expression of Post-Surgical Pain in Children
There are certain difficulties in differentiating between children's facial expression related to pain and other stimuli. In addition, the limited communication ability of children in the preverbal stage leads to misdiagnosis when the child feels pain, for example, post-surgical conditions. In this article, a classification approach of facial expression of child pain is presented based on models of pre-trained convolutional neuronal networks from the study carried out in a Colombian hospital of level 4 (Hospital Universitario San Vicente Fundación), in the recovery areas of child surgery services. AlexNet and VGG (16, 19 and Face) networks are evaluated in the own dataset using the FLACC scale and their performances are compared in three experiments. The results show that the VGG-19 model achieves the best performance (92.9%) compared to the other networks. The effectiveness of the model and transfer learning for the classification of facial expression of child pain shows a promising solution for the assessment of post-surgical pain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Perspectives in nanoscience and nanotechnology Interpretaciones del método de Descartes en didáctica del álgebra. Estudio documental Modelo predictivo de gestión del riesgo en el curso de cálculo integral del Programa Ingeniería Industrial para la Universidad El Bosque en el proceso de la deserción estudiantil Una mirada a la estrategia didáctica a partir de los componentes estructurantes, en la práctica de enseñanza de una profesora de preescolar Laboratorios virtuales y remotos en electrónica y telecomunicaciones: una revisión técnica en educación
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1