杉木酸通过抑制活化B细胞核因子κB轻链增强子(NF-κB)通路抑制M1巨噬细胞极化,减轻败血症诱导的肺损伤

Honglong Fang, Juan Chen, Jian Luo, Jianhua Hu, Danqiong Wang, L. Lv, Weiwen Zhang
{"title":"杉木酸通过抑制活化B细胞核因子κB轻链增强子(NF-κB)通路抑制M1巨噬细胞极化,减轻败血症诱导的肺损伤","authors":"Honglong Fang, Juan Chen, Jian Luo, Jianhua Hu, Danqiong Wang, L. Lv, Weiwen Zhang","doi":"10.1538/expanim.22-0018","DOIUrl":null,"url":null,"abstract":"Lung injury is one of the leading causes of death in sepsis. Abietic acid (AA) has demonstrated anti-inflammatory and bacteriostatic properties. Herein, we established a mouse model of sepsis by cecal ligation and puncture, and intraperitoneally injected AA to treat. Lung injury was assessed by H&E staining and the inflammation in bronchoalveolar lavage fluid (BALF) were assessed by counting the number of inflammatory cells and detecting the content of inflammatory factors. Meanwhile, we also designed to study the effect of AA on lipopolysaccharide (LPS)-induced inflammatory response and macrophage marker gene expression in RAW264.7 cells in vitro. In this study, we found that AA inhibited LPS-induced secretion of inflammatory mediators (IL-1β, TNF-α, IL-6 and MIP-2), and decreased the expression of M1 macrophage e markers (CD16 and iNOS) and p-p65 protein, while increased the expression of M2 macrophage markers (CD206 and Arg-1) in RAW264.7 cells in vitro. In vivo, the therapy of AA not only rescued septic animals, but also attenuated lung injury in sepsis mice. Moreover, AA decreased the number of total cells, neutrophils and macrophages, the conceration of total protein, and the levels of inflammatory mediators in BALF of sepsis mice. Further, we found that AA inhibited M1 macrophage polarization and blocked nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway in BALF of sepsis mice. In conclusion, Abietic acid attenuates sepsis-induced lung injury, and its mechanism may be related to reducing inflammation by inhibiting NF-κB signaling to inhibit M1 macrophage polarization.","PeriodicalId":75961,"journal":{"name":"Jikken dobutsu. Experimental animals","volume":"71 1","pages":"481 - 490"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Abietic acid attenuates sepsis-induced lung injury by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway to inhibit M1 macrophage polarization\",\"authors\":\"Honglong Fang, Juan Chen, Jian Luo, Jianhua Hu, Danqiong Wang, L. Lv, Weiwen Zhang\",\"doi\":\"10.1538/expanim.22-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung injury is one of the leading causes of death in sepsis. Abietic acid (AA) has demonstrated anti-inflammatory and bacteriostatic properties. Herein, we established a mouse model of sepsis by cecal ligation and puncture, and intraperitoneally injected AA to treat. Lung injury was assessed by H&E staining and the inflammation in bronchoalveolar lavage fluid (BALF) were assessed by counting the number of inflammatory cells and detecting the content of inflammatory factors. Meanwhile, we also designed to study the effect of AA on lipopolysaccharide (LPS)-induced inflammatory response and macrophage marker gene expression in RAW264.7 cells in vitro. In this study, we found that AA inhibited LPS-induced secretion of inflammatory mediators (IL-1β, TNF-α, IL-6 and MIP-2), and decreased the expression of M1 macrophage e markers (CD16 and iNOS) and p-p65 protein, while increased the expression of M2 macrophage markers (CD206 and Arg-1) in RAW264.7 cells in vitro. In vivo, the therapy of AA not only rescued septic animals, but also attenuated lung injury in sepsis mice. Moreover, AA decreased the number of total cells, neutrophils and macrophages, the conceration of total protein, and the levels of inflammatory mediators in BALF of sepsis mice. Further, we found that AA inhibited M1 macrophage polarization and blocked nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway in BALF of sepsis mice. In conclusion, Abietic acid attenuates sepsis-induced lung injury, and its mechanism may be related to reducing inflammation by inhibiting NF-κB signaling to inhibit M1 macrophage polarization.\",\"PeriodicalId\":75961,\"journal\":{\"name\":\"Jikken dobutsu. Experimental animals\",\"volume\":\"71 1\",\"pages\":\"481 - 490\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jikken dobutsu. Experimental animals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1538/expanim.22-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jikken dobutsu. Experimental animals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1538/expanim.22-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

肺损伤是败血症死亡的主要原因之一。阿比酸(AA)具有抗炎和抑菌的特性。在此,我们通过盲肠结扎和穿刺建立了败血症小鼠模型,并腹膜内注射AA进行治疗。通过H&E染色评估肺损伤,通过计数炎症细胞数量和检测炎症因子含量来评估支气管肺泡灌洗液(BALF)中的炎症。同时,我们还设计研究了AA对脂多糖(LPS)诱导的RAW264.7细胞炎症反应和巨噬细胞标志物基因表达的影响。在本研究中,我们发现AA在体外抑制LPS诱导的炎症介质(IL-1β、TNF-α、IL-6和MIP-2)的分泌,并降低M1巨噬细胞e标志物(CD16和iNOS)和p-p65蛋白的表达,同时增加M2巨噬细胞标志物(CD206和Arg-1)的表达。在体内,AA的治疗不仅拯救了败血症动物,而且减轻了败血症小鼠的肺损伤。此外,AA降低了败血症小鼠BALF中总细胞、中性粒细胞和巨噬细胞的数量,降低了总蛋白的浓度,降低了炎症介质的水平。此外,我们发现AA抑制了败血症小鼠BALF中M1巨噬细胞的极化,并阻断了活化B细胞的核因子κB轻链增强子(NF-κB)通路。总之,阿比酸减轻败血症诱导的肺损伤,其机制可能与通过抑制NF-κB信号传导抑制M1巨噬细胞极化来减轻炎症有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abietic acid attenuates sepsis-induced lung injury by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway to inhibit M1 macrophage polarization
Lung injury is one of the leading causes of death in sepsis. Abietic acid (AA) has demonstrated anti-inflammatory and bacteriostatic properties. Herein, we established a mouse model of sepsis by cecal ligation and puncture, and intraperitoneally injected AA to treat. Lung injury was assessed by H&E staining and the inflammation in bronchoalveolar lavage fluid (BALF) were assessed by counting the number of inflammatory cells and detecting the content of inflammatory factors. Meanwhile, we also designed to study the effect of AA on lipopolysaccharide (LPS)-induced inflammatory response and macrophage marker gene expression in RAW264.7 cells in vitro. In this study, we found that AA inhibited LPS-induced secretion of inflammatory mediators (IL-1β, TNF-α, IL-6 and MIP-2), and decreased the expression of M1 macrophage e markers (CD16 and iNOS) and p-p65 protein, while increased the expression of M2 macrophage markers (CD206 and Arg-1) in RAW264.7 cells in vitro. In vivo, the therapy of AA not only rescued septic animals, but also attenuated lung injury in sepsis mice. Moreover, AA decreased the number of total cells, neutrophils and macrophages, the conceration of total protein, and the levels of inflammatory mediators in BALF of sepsis mice. Further, we found that AA inhibited M1 macrophage polarization and blocked nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway in BALF of sepsis mice. In conclusion, Abietic acid attenuates sepsis-induced lung injury, and its mechanism may be related to reducing inflammation by inhibiting NF-κB signaling to inhibit M1 macrophage polarization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Symposium 4 LAS Seminar 2 Symposium 3 Encouragement Award LAS Seminar 1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1