{"title":"Pt(η3-P1X1P2)(Y)衍生物中的异三齿有机二膦-结构方面","authors":"M. Melnik, P. Mikuš","doi":"10.1515/revic-2021-0011","DOIUrl":null,"url":null,"abstract":"Abstract This review covers over 30 examples of monomeric Pt(II) complexes of the types: Pt(η3–P1O1P2)(Y) (Y = PL, CL, OL), Pt(η3–P1N1P2)(Y) (Y = H, NL, CL, Cl, PL) and Pt(η3–P1P2N1)(Y) (Y = Cl). The heterotridentate donor ligands create 11 types of a couple chelate rings with common central atom O1 (η3–P1O1P2), N1 (η3–P1N1P2) and P2 (η3–P1P2N1). The most frequent is P1C2N1C2P2. Some cooperative effects between chelate rings and Y donor ligands were found and discussed. A degree of distortions of square-planar geometry about Pt(II) were also calculated.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"42 1","pages":"297 - 306"},"PeriodicalIF":4.1000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Heterotridentate organodiphosphines in Pt(η3–P1X1P2)(Y) derivatives-structural aspects\",\"authors\":\"M. Melnik, P. Mikuš\",\"doi\":\"10.1515/revic-2021-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This review covers over 30 examples of monomeric Pt(II) complexes of the types: Pt(η3–P1O1P2)(Y) (Y = PL, CL, OL), Pt(η3–P1N1P2)(Y) (Y = H, NL, CL, Cl, PL) and Pt(η3–P1P2N1)(Y) (Y = Cl). The heterotridentate donor ligands create 11 types of a couple chelate rings with common central atom O1 (η3–P1O1P2), N1 (η3–P1N1P2) and P2 (η3–P1P2N1). The most frequent is P1C2N1C2P2. Some cooperative effects between chelate rings and Y donor ligands were found and discussed. A degree of distortions of square-planar geometry about Pt(II) were also calculated.\",\"PeriodicalId\":21162,\"journal\":{\"name\":\"Reviews in Inorganic Chemistry\",\"volume\":\"42 1\",\"pages\":\"297 - 306\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/revic-2021-0011\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revic-2021-0011","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Heterotridentate organodiphosphines in Pt(η3–P1X1P2)(Y) derivatives-structural aspects
Abstract This review covers over 30 examples of monomeric Pt(II) complexes of the types: Pt(η3–P1O1P2)(Y) (Y = PL, CL, OL), Pt(η3–P1N1P2)(Y) (Y = H, NL, CL, Cl, PL) and Pt(η3–P1P2N1)(Y) (Y = Cl). The heterotridentate donor ligands create 11 types of a couple chelate rings with common central atom O1 (η3–P1O1P2), N1 (η3–P1N1P2) and P2 (η3–P1P2N1). The most frequent is P1C2N1C2P2. Some cooperative effects between chelate rings and Y donor ligands were found and discussed. A degree of distortions of square-planar geometry about Pt(II) were also calculated.
期刊介绍:
Reviews in Inorganic Chemistry (REVIC) is a quarterly, peer-reviewed journal that focuses on developments in inorganic chemistry. Technical reviews offer detailed synthesis protocols, reviews of methodology and descriptions of apparatus. Topics are treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are committed to high quality standards and rapid handling of the review and publication process. The journal publishes all aspects of solid-state, molecular and surface chemistry. Topics may be treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are commited to high quality standards and rapid handling of the review and publication process.
Topics:
-Main group chemistry-
Transition metal chemistry-
Coordination chemistry-
Organometallic chemistry-
Catalysis-
Bioinorganic chemistry-
Supramolecular chemistry-
Ionic liquids