Yu. S. Pogozhev, A. Yu. Potanin, S. I. Rupasov, F. V. Kiryukhantsev-Korneev, E. A. Levashov
{"title":"ZrB2合金MoSi2-MoB异相陶瓷自蔓延高温合成与固结","authors":"Yu. S. Pogozhev, A. Yu. Potanin, S. I. Rupasov, F. V. Kiryukhantsev-Korneev, E. A. Levashov","doi":"10.3103/S106138622303007X","DOIUrl":null,"url":null,"abstract":"<p>In this study, we investigate the self-propagating high-temperature synthesis (SHS) and consolidation of heterophase MoSi<sub>2</sub>–MoB ceramics alloyed with ZrB<sub>2</sub>. A thermodynamic analysis of the combustion temperature (<i>T</i><sub>ad</sub>) and the equilibrium composition of synthesis products was performed for the Zr–Mo–Si–B system. The effect of varying Zr and B concentrations on combustion kinetics was studied in detail. The resulting heterophase SHS powders showed high structural and chemical homogeneity, though were noticeably agglomerated. We identified optimal consolidation conditions and achieved compact ceramics with a phase composition identical to the original SHS powder. The ceramic structure consists of a matrix of MoSi<sub>2</sub> grains with interspersed needle-like ZrB<sub>2</sub> grains and polyhedral inclusions of MoB. This work establishes a basis for the preparation of MoSi<sub>2</sub>–MoB–ZrB<sub>2</sub> ceramics with excellent hardness, fracture toughness, thermal conductivity, and high-temperature oxidation resistance.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 3","pages":"221 - 232"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Propagating High-Temperature Synthesis and Consolidation of MoSi2–MoB Heterophase Ceramics Alloyed with ZrB2\",\"authors\":\"Yu. S. Pogozhev, A. Yu. Potanin, S. I. Rupasov, F. V. Kiryukhantsev-Korneev, E. A. Levashov\",\"doi\":\"10.3103/S106138622303007X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we investigate the self-propagating high-temperature synthesis (SHS) and consolidation of heterophase MoSi<sub>2</sub>–MoB ceramics alloyed with ZrB<sub>2</sub>. A thermodynamic analysis of the combustion temperature (<i>T</i><sub>ad</sub>) and the equilibrium composition of synthesis products was performed for the Zr–Mo–Si–B system. The effect of varying Zr and B concentrations on combustion kinetics was studied in detail. The resulting heterophase SHS powders showed high structural and chemical homogeneity, though were noticeably agglomerated. We identified optimal consolidation conditions and achieved compact ceramics with a phase composition identical to the original SHS powder. The ceramic structure consists of a matrix of MoSi<sub>2</sub> grains with interspersed needle-like ZrB<sub>2</sub> grains and polyhedral inclusions of MoB. This work establishes a basis for the preparation of MoSi<sub>2</sub>–MoB–ZrB<sub>2</sub> ceramics with excellent hardness, fracture toughness, thermal conductivity, and high-temperature oxidation resistance.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"32 3\",\"pages\":\"221 - 232\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S106138622303007X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S106138622303007X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-Propagating High-Temperature Synthesis and Consolidation of MoSi2–MoB Heterophase Ceramics Alloyed with ZrB2
In this study, we investigate the self-propagating high-temperature synthesis (SHS) and consolidation of heterophase MoSi2–MoB ceramics alloyed with ZrB2. A thermodynamic analysis of the combustion temperature (Tad) and the equilibrium composition of synthesis products was performed for the Zr–Mo–Si–B system. The effect of varying Zr and B concentrations on combustion kinetics was studied in detail. The resulting heterophase SHS powders showed high structural and chemical homogeneity, though were noticeably agglomerated. We identified optimal consolidation conditions and achieved compact ceramics with a phase composition identical to the original SHS powder. The ceramic structure consists of a matrix of MoSi2 grains with interspersed needle-like ZrB2 grains and polyhedral inclusions of MoB. This work establishes a basis for the preparation of MoSi2–MoB–ZrB2 ceramics with excellent hardness, fracture toughness, thermal conductivity, and high-temperature oxidation resistance.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.