V. D. Zhuravlev, O. G. Reznitskikh, L. V. Ermakova, T. A. Patrusheva, K. V. Nefedova
{"title":"不同燃料制备铝酸锂scs前驱体的同时热分析","authors":"V. D. Zhuravlev, O. G. Reznitskikh, L. V. Ermakova, T. A. Patrusheva, K. V. Nefedova","doi":"10.3103/S1061386223030111","DOIUrl":null,"url":null,"abstract":"<p>Lithium aluminate samples were obtained in reactions of solution combustion synthesis (SCS) with various types of fuel (glycine, leucine, and urea) from aluminum and lithium nitrate solutions. The simultaneous thermal analysis (STA) of precursors obtained in conditions of fuel and oxidizer stoichiometry showed the presence of impurities due to incomplete decomposition of initial salts containing carbon fragments of fuel and nitrate groups. An exception was the precursor from the dual-fuel SCS reaction, φ (glycine : urea) = 1 : 3, in which pure γ-LiAlO<sub>2</sub> powder was formed. Replacement of lithium nitrate with lithium carbonate was found to reduce the process temperature and the relative amount of organic fuel. As a result, the content of carbon fragments in the precursor significantly decreased after synthesis.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 3","pages":"208 - 214"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Thermal Analysis of Lithium Aluminate SCS-Precursors Produced with Different Fuels\",\"authors\":\"V. D. Zhuravlev, O. G. Reznitskikh, L. V. Ermakova, T. A. Patrusheva, K. V. Nefedova\",\"doi\":\"10.3103/S1061386223030111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lithium aluminate samples were obtained in reactions of solution combustion synthesis (SCS) with various types of fuel (glycine, leucine, and urea) from aluminum and lithium nitrate solutions. The simultaneous thermal analysis (STA) of precursors obtained in conditions of fuel and oxidizer stoichiometry showed the presence of impurities due to incomplete decomposition of initial salts containing carbon fragments of fuel and nitrate groups. An exception was the precursor from the dual-fuel SCS reaction, φ (glycine : urea) = 1 : 3, in which pure γ-LiAlO<sub>2</sub> powder was formed. Replacement of lithium nitrate with lithium carbonate was found to reduce the process temperature and the relative amount of organic fuel. As a result, the content of carbon fragments in the precursor significantly decreased after synthesis.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"32 3\",\"pages\":\"208 - 214\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1061386223030111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386223030111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Simultaneous Thermal Analysis of Lithium Aluminate SCS-Precursors Produced with Different Fuels
Lithium aluminate samples were obtained in reactions of solution combustion synthesis (SCS) with various types of fuel (glycine, leucine, and urea) from aluminum and lithium nitrate solutions. The simultaneous thermal analysis (STA) of precursors obtained in conditions of fuel and oxidizer stoichiometry showed the presence of impurities due to incomplete decomposition of initial salts containing carbon fragments of fuel and nitrate groups. An exception was the precursor from the dual-fuel SCS reaction, φ (glycine : urea) = 1 : 3, in which pure γ-LiAlO2 powder was formed. Replacement of lithium nitrate with lithium carbonate was found to reduce the process temperature and the relative amount of organic fuel. As a result, the content of carbon fragments in the precursor significantly decreased after synthesis.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.