不同燃料制备铝酸锂scs前驱体的同时热分析

IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Self-Propagating High-Temperature Synthesis Pub Date : 2023-09-05 DOI:10.3103/S1061386223030111
V. D. Zhuravlev, O. G. Reznitskikh, L. V. Ermakova, T. A. Patrusheva, K. V. Nefedova
{"title":"不同燃料制备铝酸锂scs前驱体的同时热分析","authors":"V. D. Zhuravlev,&nbsp;O. G. Reznitskikh,&nbsp;L. V. Ermakova,&nbsp;T. A. Patrusheva,&nbsp;K. V. Nefedova","doi":"10.3103/S1061386223030111","DOIUrl":null,"url":null,"abstract":"<p>Lithium aluminate samples were obtained in reactions of solution combustion synthesis (SCS) with various types of fuel (glycine, leucine, and urea) from aluminum and lithium nitrate solutions. The simultaneous thermal analysis (STA) of precursors obtained in conditions of fuel and oxidizer stoichiometry showed the presence of impurities due to incomplete decomposition of initial salts containing carbon fragments of fuel and nitrate groups. An exception was the precursor from the dual-fuel SCS reaction, φ (glycine : urea) = 1 : 3, in which pure γ-LiAlO<sub>2</sub> powder was formed. Replacement of lithium nitrate with lithium carbonate was found to reduce the process temperature and the relative amount of organic fuel. As a result, the content of carbon fragments in the precursor significantly decreased after synthesis.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 3","pages":"208 - 214"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Thermal Analysis of Lithium Aluminate SCS-Precursors Produced with Different Fuels\",\"authors\":\"V. D. Zhuravlev,&nbsp;O. G. Reznitskikh,&nbsp;L. V. Ermakova,&nbsp;T. A. Patrusheva,&nbsp;K. V. Nefedova\",\"doi\":\"10.3103/S1061386223030111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lithium aluminate samples were obtained in reactions of solution combustion synthesis (SCS) with various types of fuel (glycine, leucine, and urea) from aluminum and lithium nitrate solutions. The simultaneous thermal analysis (STA) of precursors obtained in conditions of fuel and oxidizer stoichiometry showed the presence of impurities due to incomplete decomposition of initial salts containing carbon fragments of fuel and nitrate groups. An exception was the precursor from the dual-fuel SCS reaction, φ (glycine : urea) = 1 : 3, in which pure γ-LiAlO<sub>2</sub> powder was formed. Replacement of lithium nitrate with lithium carbonate was found to reduce the process temperature and the relative amount of organic fuel. As a result, the content of carbon fragments in the precursor significantly decreased after synthesis.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"32 3\",\"pages\":\"208 - 214\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1061386223030111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386223030111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以铝和硝酸锂溶液为原料,用不同类型的燃料(甘氨酸、亮氨酸和尿素)与溶液燃烧合成(SCS)反应得到铝酸锂样品。在燃料和氧化剂化学计量条件下获得的前驱体的同时热分析(STA)表明,由于含有燃料碳碎片和硝酸盐基团的初始盐的不完全分解而存在杂质。一个例外是双燃料SCS反应的前驱体,φ(甘氨酸:尿素)= 1:3,其中形成了纯γ-LiAlO2粉末。用碳酸锂代替硝酸锂可以降低工艺温度和有机燃料的相对用量。因此,合成后前驱体中碳碎片的含量显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous Thermal Analysis of Lithium Aluminate SCS-Precursors Produced with Different Fuels

Lithium aluminate samples were obtained in reactions of solution combustion synthesis (SCS) with various types of fuel (glycine, leucine, and urea) from aluminum and lithium nitrate solutions. The simultaneous thermal analysis (STA) of precursors obtained in conditions of fuel and oxidizer stoichiometry showed the presence of impurities due to incomplete decomposition of initial salts containing carbon fragments of fuel and nitrate groups. An exception was the precursor from the dual-fuel SCS reaction, φ (glycine : urea) = 1 : 3, in which pure γ-LiAlO2 powder was formed. Replacement of lithium nitrate with lithium carbonate was found to reduce the process temperature and the relative amount of organic fuel. As a result, the content of carbon fragments in the precursor significantly decreased after synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
33.30%
发文量
27
期刊介绍: International Journal of Self-Propagating High-Temperature Synthesis  is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.
期刊最新文献
Spatial Gasless Combustion Modes in a Sample with Discrete Structure Finger Formation during Combustion of Granular Mixture Zr + 0.5C in Inert Gas Flow Exploring the Influence of Zinc Doping on Nano Ferrites: A Review of Structural, Dielectric, and Magnetic Studies Self-Propagating High-Temperature Synthesis of MgAlON Using Mg Powder Multifunctional Catalysts Based on High-Entropy Transition Metal Alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1