Deyang Wang , Honghu Zhu , Guyu Zhou , Wenzhao Yu , Baojun Wang , Wanhuan Zhou
{"title":"利用光纤光栅和粒子图像测速技术监测滑动带的剪切变形","authors":"Deyang Wang , Honghu Zhu , Guyu Zhou , Wenzhao Yu , Baojun Wang , Wanhuan Zhou","doi":"10.1016/j.jrmge.2023.03.007","DOIUrl":null,"url":null,"abstract":"<div><p>Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism, in which fiber optic strain sensing has shown great potential. However, the correlation between strain measurements of quasi-distributed fiber Bragg grating (FBG) sensing arrays and shear displacements of surrounding soil remains elusive. In this study, a direct shear model test was conducted to simulate the shear deformation of sliding zones, in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry (PIV). The test results show that there were two main slip surfaces and two secondary ones, developing a spindle-shaped shear band in the soil. The formation of the shear band was successfully captured by FBG sensors. A sinusoidal model was proposed to describe the fiber optic cable deformation behavior. On this basis, the shear displacements and shear band widths were calculated by using strain measurements. This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors.</p></div>","PeriodicalId":54219,"journal":{"name":"Journal of Rock Mechanics and Geotechnical Engineering","volume":"16 1","pages":"Pages 231-241"},"PeriodicalIF":9.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674775523000999/pdfft?md5=73dd287d48c5fd0b1dec95e3eb8b930a&pid=1-s2.0-S1674775523000999-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Monitoring shear deformation of sliding zone via fiber Bragg grating and particle image velocimetry\",\"authors\":\"Deyang Wang , Honghu Zhu , Guyu Zhou , Wenzhao Yu , Baojun Wang , Wanhuan Zhou\",\"doi\":\"10.1016/j.jrmge.2023.03.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism, in which fiber optic strain sensing has shown great potential. However, the correlation between strain measurements of quasi-distributed fiber Bragg grating (FBG) sensing arrays and shear displacements of surrounding soil remains elusive. In this study, a direct shear model test was conducted to simulate the shear deformation of sliding zones, in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry (PIV). The test results show that there were two main slip surfaces and two secondary ones, developing a spindle-shaped shear band in the soil. The formation of the shear band was successfully captured by FBG sensors. A sinusoidal model was proposed to describe the fiber optic cable deformation behavior. On this basis, the shear displacements and shear band widths were calculated by using strain measurements. This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors.</p></div>\",\"PeriodicalId\":54219,\"journal\":{\"name\":\"Journal of Rock Mechanics and Geotechnical Engineering\",\"volume\":\"16 1\",\"pages\":\"Pages 231-241\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674775523000999/pdfft?md5=73dd287d48c5fd0b1dec95e3eb8b930a&pid=1-s2.0-S1674775523000999-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rock Mechanics and Geotechnical Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674775523000999\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rock Mechanics and Geotechnical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674775523000999","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Monitoring shear deformation of sliding zone via fiber Bragg grating and particle image velocimetry
Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism, in which fiber optic strain sensing has shown great potential. However, the correlation between strain measurements of quasi-distributed fiber Bragg grating (FBG) sensing arrays and shear displacements of surrounding soil remains elusive. In this study, a direct shear model test was conducted to simulate the shear deformation of sliding zones, in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry (PIV). The test results show that there were two main slip surfaces and two secondary ones, developing a spindle-shaped shear band in the soil. The formation of the shear band was successfully captured by FBG sensors. A sinusoidal model was proposed to describe the fiber optic cable deformation behavior. On this basis, the shear displacements and shear band widths were calculated by using strain measurements. This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors.
期刊介绍:
The Journal of Rock Mechanics and Geotechnical Engineering (JRMGE), overseen by the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, is dedicated to the latest advancements in rock mechanics and geotechnical engineering. It serves as a platform for global scholars to stay updated on developments in various related fields including soil mechanics, foundation engineering, civil engineering, mining engineering, hydraulic engineering, petroleum engineering, and engineering geology. With a focus on fostering international academic exchange, JRMGE acts as a conduit between theoretical advancements and practical applications. Topics covered include new theories, technologies, methods, experiences, in-situ and laboratory tests, developments, case studies, and timely reviews within the realm of rock mechanics and geotechnical engineering.