从抽烟系统中回收热量的可行性评估

Q1 Engineering Energy and Built Environment Pub Date : 2023-08-01 DOI:10.1016/j.enbenv.2022.03.003
Liam Hancox , Siliang Yang , Paul Hallam , Michael White , Saim Memon
{"title":"从抽烟系统中回收热量的可行性评估","authors":"Liam Hancox ,&nbsp;Siliang Yang ,&nbsp;Paul Hallam ,&nbsp;Michael White ,&nbsp;Saim Memon","doi":"10.1016/j.enbenv.2022.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Over the course of industrial manufacturing, additional heat within the extract systems is usually released into the atmosphere and its intrinsic energy is wasted. This paper investigated a cold abatement smoke extract system for a fire testing wall furnace to determine the viability in recovering heat from the hot smoke. Three scenarios were investigated: 1) the extract system was closed and only 300°C smoke was present; 2) the system took in ambient air around the furnace and heat recovery occurred at 80°C in smoky air; 3) the smoke had been removed from the air and the temperature was 60°C. It was found that there was a significant build-up of soot on Scenarios 1 &amp; 2 with a build-up rate of 0.25 μm/s which totalled 2.7 mm of soot after a three-hour test. The soot had a low heat transfer rate and therefore acted as an insulator on the heat exchanger which reduced the efficiency significantly of it over time. Due to this loss in efficiency, it was more viable to recover heat in Scenario 3 at 60°C in clean air than it was to recover heat at 300°C or 80°C in smoky air. The results show that having clean air was more important than a higher temperature when it came from recovering heat from a cold abatement system for a fire testing furnace. This paper contributes to reveal the possibilities of harnessing the “waste heat” for use in other applications in the vicinity of the manufacturing processes, such as heating water within a central heating plant, domestic hot water or electricity generation, or re-cycled within the industrial plant itself.</p></div>","PeriodicalId":33659,"journal":{"name":"Energy and Built Environment","volume":"4 4","pages":"Pages 458-466"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An assessment for the viability of recovering heat from a smoke extract system\",\"authors\":\"Liam Hancox ,&nbsp;Siliang Yang ,&nbsp;Paul Hallam ,&nbsp;Michael White ,&nbsp;Saim Memon\",\"doi\":\"10.1016/j.enbenv.2022.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over the course of industrial manufacturing, additional heat within the extract systems is usually released into the atmosphere and its intrinsic energy is wasted. This paper investigated a cold abatement smoke extract system for a fire testing wall furnace to determine the viability in recovering heat from the hot smoke. Three scenarios were investigated: 1) the extract system was closed and only 300°C smoke was present; 2) the system took in ambient air around the furnace and heat recovery occurred at 80°C in smoky air; 3) the smoke had been removed from the air and the temperature was 60°C. It was found that there was a significant build-up of soot on Scenarios 1 &amp; 2 with a build-up rate of 0.25 μm/s which totalled 2.7 mm of soot after a three-hour test. The soot had a low heat transfer rate and therefore acted as an insulator on the heat exchanger which reduced the efficiency significantly of it over time. Due to this loss in efficiency, it was more viable to recover heat in Scenario 3 at 60°C in clean air than it was to recover heat at 300°C or 80°C in smoky air. The results show that having clean air was more important than a higher temperature when it came from recovering heat from a cold abatement system for a fire testing furnace. This paper contributes to reveal the possibilities of harnessing the “waste heat” for use in other applications in the vicinity of the manufacturing processes, such as heating water within a central heating plant, domestic hot water or electricity generation, or re-cycled within the industrial plant itself.</p></div>\",\"PeriodicalId\":33659,\"journal\":{\"name\":\"Energy and Built Environment\",\"volume\":\"4 4\",\"pages\":\"Pages 458-466\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and Built Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666123322000241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666123322000241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

在工业制造过程中,提取系统中的额外热量通常被释放到大气中,其固有能量被浪费了。本文研究了一种用于防火试验墙炉的冷减排排烟系统,以确定热烟热回收的可行性。研究了三种情况:1)抽提系统关闭,只有300°C烟雾存在;2)系统吸收炉膛周围的空气,在80℃的有烟空气中进行热回收;3)空气中的烟雾已被清除,温度为60℃。结果发现,在情景1和情景1中有大量的烟尘积聚。2.累积速率为0.25 μm/s,经过3小时的测试,烟尘总量为2.7 mm。烟灰具有较低的传热速率,因此作为热交换器的绝缘体,随着时间的推移,其效率显著降低。由于这种效率损失,在60°C的清洁空气中回收热量比在300°C或80°C的烟雾空气中回收热量更可行。结果表明,当从火灾测试炉的冷减排系统回收热量时,拥有清洁的空气比更高的温度更重要。本文有助于揭示利用“废热”在制造过程附近的其他应用中使用的可能性,例如在中央供热厂内加热水,家庭热水或发电,或在工业工厂内再循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An assessment for the viability of recovering heat from a smoke extract system

Over the course of industrial manufacturing, additional heat within the extract systems is usually released into the atmosphere and its intrinsic energy is wasted. This paper investigated a cold abatement smoke extract system for a fire testing wall furnace to determine the viability in recovering heat from the hot smoke. Three scenarios were investigated: 1) the extract system was closed and only 300°C smoke was present; 2) the system took in ambient air around the furnace and heat recovery occurred at 80°C in smoky air; 3) the smoke had been removed from the air and the temperature was 60°C. It was found that there was a significant build-up of soot on Scenarios 1 & 2 with a build-up rate of 0.25 μm/s which totalled 2.7 mm of soot after a three-hour test. The soot had a low heat transfer rate and therefore acted as an insulator on the heat exchanger which reduced the efficiency significantly of it over time. Due to this loss in efficiency, it was more viable to recover heat in Scenario 3 at 60°C in clean air than it was to recover heat at 300°C or 80°C in smoky air. The results show that having clean air was more important than a higher temperature when it came from recovering heat from a cold abatement system for a fire testing furnace. This paper contributes to reveal the possibilities of harnessing the “waste heat” for use in other applications in the vicinity of the manufacturing processes, such as heating water within a central heating plant, domestic hot water or electricity generation, or re-cycled within the industrial plant itself.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and Built Environment
Energy and Built Environment Engineering-Building and Construction
CiteScore
15.90
自引率
0.00%
发文量
104
审稿时长
49 days
期刊最新文献
Editorial Board Editorial Board Editorial Board Overview of the application status and development trends of hydropower and geothermal power in New Zealand Study on the Deposition Characteristics of Fine Particles at Local Components in Air Conditioning Ventilation Ducts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1