{"title":"阳离子+ 1,+ 2,+ 3和阴离子- 1的元素周期表。内部周期性和凯诺对称性表现的定量特征","authors":"Naum S. Imyanitov","doi":"10.1007/s10698-022-09421-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes the construction of the Periodic Tables for cations of all elements with charges + 1, + 2, + 3 and anions with charge − 1. The Table for cations<sup>+1</sup> differs significantly from other newly constructed Tables and from known Tables, as the d- and f-blocks are inserted into s-block and split it up for two parts. Importantly, a new type of 3d- and 4f-shell contractions has been discovered. The manifestations of secondary periodicity in case of anions is absent or opposite to the manifestations observed for atoms and cations. For kainosymmetric anions, the ionization energies are lowered, which contradicts the theoretical assumptions and experimental data supporting the classical concept of kainosymmetry. Simple formulas are proposed for quantitative description of the manifestations of internal periodicity and kainosymmetry. The regularities of change in these manifestations depending on the charge and the position of ions or atoms in the Periodic Table are established. In the 6th period, the bifurcation in the properties characteristic of the internal periodicity does not occur at usual position, i.e. in the middle of the row from the block of the Periodic Table (p<sup>3</sup>–p<sup>4</sup>), but takes place earlier, along with the transition of the electronic configurations p<sup>2</sup>–p<sup>3</sup>. In other words, the place of transition from \"early\" to \"late\" elements changes.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10698-022-09421-2.pdf","citationCount":"2","resultStr":"{\"title\":\"Periodic tables for cations + 1, + 2, + 3 and anions − 1. Quantitative characteristics for manifestations of internal periodicity and kainosymmetry\",\"authors\":\"Naum S. Imyanitov\",\"doi\":\"10.1007/s10698-022-09421-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper describes the construction of the Periodic Tables for cations of all elements with charges + 1, + 2, + 3 and anions with charge − 1. The Table for cations<sup>+1</sup> differs significantly from other newly constructed Tables and from known Tables, as the d- and f-blocks are inserted into s-block and split it up for two parts. Importantly, a new type of 3d- and 4f-shell contractions has been discovered. The manifestations of secondary periodicity in case of anions is absent or opposite to the manifestations observed for atoms and cations. For kainosymmetric anions, the ionization energies are lowered, which contradicts the theoretical assumptions and experimental data supporting the classical concept of kainosymmetry. Simple formulas are proposed for quantitative description of the manifestations of internal periodicity and kainosymmetry. The regularities of change in these manifestations depending on the charge and the position of ions or atoms in the Periodic Table are established. In the 6th period, the bifurcation in the properties characteristic of the internal periodicity does not occur at usual position, i.e. in the middle of the row from the block of the Periodic Table (p<sup>3</sup>–p<sup>4</sup>), but takes place earlier, along with the transition of the electronic configurations p<sup>2</sup>–p<sup>3</sup>. In other words, the place of transition from \\\"early\\\" to \\\"late\\\" elements changes.</p></div>\",\"PeriodicalId\":568,\"journal\":{\"name\":\"Foundations of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10698-022-09421-2.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10698-022-09421-2\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10698-022-09421-2","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
Periodic tables for cations + 1, + 2, + 3 and anions − 1. Quantitative characteristics for manifestations of internal periodicity and kainosymmetry
This paper describes the construction of the Periodic Tables for cations of all elements with charges + 1, + 2, + 3 and anions with charge − 1. The Table for cations+1 differs significantly from other newly constructed Tables and from known Tables, as the d- and f-blocks are inserted into s-block and split it up for two parts. Importantly, a new type of 3d- and 4f-shell contractions has been discovered. The manifestations of secondary periodicity in case of anions is absent or opposite to the manifestations observed for atoms and cations. For kainosymmetric anions, the ionization energies are lowered, which contradicts the theoretical assumptions and experimental data supporting the classical concept of kainosymmetry. Simple formulas are proposed for quantitative description of the manifestations of internal periodicity and kainosymmetry. The regularities of change in these manifestations depending on the charge and the position of ions or atoms in the Periodic Table are established. In the 6th period, the bifurcation in the properties characteristic of the internal periodicity does not occur at usual position, i.e. in the middle of the row from the block of the Periodic Table (p3–p4), but takes place earlier, along with the transition of the electronic configurations p2–p3. In other words, the place of transition from "early" to "late" elements changes.
期刊介绍:
Foundations of Chemistry is an international journal which seeks to provide an interdisciplinary forum where chemists, biochemists, philosophers, historians, educators and sociologists with an interest in foundational issues can discuss conceptual and fundamental issues which relate to the `central science'' of chemistry. Such issues include the autonomous role of chemistry between physics and biology and the question of the reduction of chemistry to quantum mechanics. The journal will publish peer-reviewed academic articles on a wide range of subdisciplines, among others: chemical models, chemical language, metaphors, and theoretical terms; chemical evolution and artificial self-replication; industrial application, environmental concern, and the social and ethical aspects of chemistry''s professionalism; the nature of modeling and the role of instrumentation in chemistry; institutional studies and the nature of explanation in the chemical sciences; theoretical chemistry, molecular structure and chaos; the issue of realism; molecular biology, bio-inorganic chemistry; historical studies on ancient chemistry, medieval chemistry and alchemy; philosophical and historical articles; and material of a didactic nature relating to all topics in the chemical sciences. Foundations of Chemistry plans to feature special issues devoted to particular themes, and will contain book reviews and discussion notes. Audience: chemists, biochemists, philosophers, historians, chemical educators, sociologists, and other scientists with an interest in the foundational issues of science.