Abdullah Dawar , Zahir Shah , Saeed Islam , Wejdan Deebani , Meshal Shutaywi
{"title":"具有太阳辐射效应的水性铜纳米流体通过平板的MHD滞流","authors":"Abdullah Dawar , Zahir Shah , Saeed Islam , Wejdan Deebani , Meshal Shutaywi","doi":"10.1016/j.petrol.2022.111148","DOIUrl":null,"url":null,"abstract":"<div><p><span>Due to many biological and technical applications, including microelectronics, heat exchangers, cancer therapy, process industries, solar collectors and power production, researchers have been more interested in the mechanism of heat transfer involving </span>nanomaterials<span><span>. A contemporary method to increase the thermal conductivity<span> of various cooling fluids is the use of nanomaterials. Many researches suggest that the thermal conductivity of nanoliquids; solid nanoparticles combined with a base fluid, is expressively greater than that of conventional fluids. This work presents the theoretical investigation of </span></span>magnetohydrodynamic<span><span> stagnation point<span> flow of non-Newtonian nanofluid<span><span> flow past flat plate. The applications of solar radiation towards water-based copper nanoparticles are highlighted in this study. The system of PDEs is transmuted into the system of ODEs by mean of suitable similarity variable. Analytical solution of the present analysis has been performed with the help of HAM technique. The impacts of physical factors on the flow profiles, skin friction coefficient, heat, and mass transfer rates are calculated. It is significant to note that the default concentration is weighted by 4% throughout this analysis. Also in this analysis, we examined the temperature and heat transfer rate for the presence and absence of solar radiation. It is found that the greater nanoparticles </span>volume fraction of the water-based copper nanoparticles has accelerated the flow profiles for the absence of magnetic field. However, for the presence of strong magnetic field, the velocity, and temperature of the water-based copper nanoparticles have significantly reduced. Due to the incidence of </span></span></span>Lorentz force, the velocity of the water-based copper nanoparticles has deteriorated, while the temperature profile has augmented. It is found that the solar radiation has always dominant impression on temperature of the water based copper nanoparticles.</span></span></p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":"220 ","pages":"Article 111148"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MHD stagnation point flow of a water-based copper nanofluid past a flat plate with solar radiation effect\",\"authors\":\"Abdullah Dawar , Zahir Shah , Saeed Islam , Wejdan Deebani , Meshal Shutaywi\",\"doi\":\"10.1016/j.petrol.2022.111148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Due to many biological and technical applications, including microelectronics, heat exchangers, cancer therapy, process industries, solar collectors and power production, researchers have been more interested in the mechanism of heat transfer involving </span>nanomaterials<span><span>. A contemporary method to increase the thermal conductivity<span> of various cooling fluids is the use of nanomaterials. Many researches suggest that the thermal conductivity of nanoliquids; solid nanoparticles combined with a base fluid, is expressively greater than that of conventional fluids. This work presents the theoretical investigation of </span></span>magnetohydrodynamic<span><span> stagnation point<span> flow of non-Newtonian nanofluid<span><span> flow past flat plate. The applications of solar radiation towards water-based copper nanoparticles are highlighted in this study. The system of PDEs is transmuted into the system of ODEs by mean of suitable similarity variable. Analytical solution of the present analysis has been performed with the help of HAM technique. The impacts of physical factors on the flow profiles, skin friction coefficient, heat, and mass transfer rates are calculated. It is significant to note that the default concentration is weighted by 4% throughout this analysis. Also in this analysis, we examined the temperature and heat transfer rate for the presence and absence of solar radiation. It is found that the greater nanoparticles </span>volume fraction of the water-based copper nanoparticles has accelerated the flow profiles for the absence of magnetic field. However, for the presence of strong magnetic field, the velocity, and temperature of the water-based copper nanoparticles have significantly reduced. Due to the incidence of </span></span></span>Lorentz force, the velocity of the water-based copper nanoparticles has deteriorated, while the temperature profile has augmented. It is found that the solar radiation has always dominant impression on temperature of the water based copper nanoparticles.</span></span></p></div>\",\"PeriodicalId\":16717,\"journal\":{\"name\":\"Journal of Petroleum Science and Engineering\",\"volume\":\"220 \",\"pages\":\"Article 111148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920410522010002\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920410522010002","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
MHD stagnation point flow of a water-based copper nanofluid past a flat plate with solar radiation effect
Due to many biological and technical applications, including microelectronics, heat exchangers, cancer therapy, process industries, solar collectors and power production, researchers have been more interested in the mechanism of heat transfer involving nanomaterials. A contemporary method to increase the thermal conductivity of various cooling fluids is the use of nanomaterials. Many researches suggest that the thermal conductivity of nanoliquids; solid nanoparticles combined with a base fluid, is expressively greater than that of conventional fluids. This work presents the theoretical investigation of magnetohydrodynamic stagnation point flow of non-Newtonian nanofluid flow past flat plate. The applications of solar radiation towards water-based copper nanoparticles are highlighted in this study. The system of PDEs is transmuted into the system of ODEs by mean of suitable similarity variable. Analytical solution of the present analysis has been performed with the help of HAM technique. The impacts of physical factors on the flow profiles, skin friction coefficient, heat, and mass transfer rates are calculated. It is significant to note that the default concentration is weighted by 4% throughout this analysis. Also in this analysis, we examined the temperature and heat transfer rate for the presence and absence of solar radiation. It is found that the greater nanoparticles volume fraction of the water-based copper nanoparticles has accelerated the flow profiles for the absence of magnetic field. However, for the presence of strong magnetic field, the velocity, and temperature of the water-based copper nanoparticles have significantly reduced. Due to the incidence of Lorentz force, the velocity of the water-based copper nanoparticles has deteriorated, while the temperature profile has augmented. It is found that the solar radiation has always dominant impression on temperature of the water based copper nanoparticles.
期刊介绍:
The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership.
The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.