{"title":"使用COSMIC-2 GNSS无线电掩星TEC数据评估IRI-2016和IRI-2020模型在埃及上空不同磁活动下的性能","authors":"A. Sherif, M. Rabah, A. Mousa, A. Zaki, A. Sedeek","doi":"10.1515/jag-2023-0068","DOIUrl":null,"url":null,"abstract":"Abstract Variations in Total Electron Content (TEC) between the COSMIC-2, IRI-2016, and IRI-2020 are considered under different levels of geomagnetic storm activity: minor, moderate, and severe. TEC values are scrutinized at three levels of the Kp index, which serves as a metric for gauging the strength of a magnetic storm (Kp = 3.0, Kp = 6.0, Kp = 8.0) and across four-time intervals throughout 24 h to understand the performance of the models during both day and night-time conditions. Statistical analysis reveals that the standard deviation of TEC variations is lower during minor storms than moderate and severe. The comparison of variations between COSMIC-2 Radio Occultation TEC and both IRI-2016 and IRI-2020 models revealed more substantial discrepancies during day-time intervals; This was likely attributed to the dynamic and complex nature of the ionosphere influenced by solar radiation and other factors. Comparative analysis across the three levels of storm activity demonstrated that IRI2020 provided improved results over IRI2016, particularly during minor geomagnetic storm events. The study demonstrates that IRI2020 is more accurate than IRI-2016 at forecasting ionospheric conditions, especially at night and during moderate geomagnetic storm activity periods. Both models, however, provide valuable insights during challenging space weather conditions, and the results demonstrate their utility in understanding and forecasting the ionosphere’s behavior. The results yield valuable insights into space weather conditions and their effects on technology and communication, highlighting the potential for further improvement in TEC prediction models.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessing the performance of IRI-2016 and IRI-2020 models using COSMIC-2 GNSS radio occultation TEC data under different magnetic activities over Egypt\",\"authors\":\"A. Sherif, M. Rabah, A. Mousa, A. Zaki, A. Sedeek\",\"doi\":\"10.1515/jag-2023-0068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Variations in Total Electron Content (TEC) between the COSMIC-2, IRI-2016, and IRI-2020 are considered under different levels of geomagnetic storm activity: minor, moderate, and severe. TEC values are scrutinized at three levels of the Kp index, which serves as a metric for gauging the strength of a magnetic storm (Kp = 3.0, Kp = 6.0, Kp = 8.0) and across four-time intervals throughout 24 h to understand the performance of the models during both day and night-time conditions. Statistical analysis reveals that the standard deviation of TEC variations is lower during minor storms than moderate and severe. The comparison of variations between COSMIC-2 Radio Occultation TEC and both IRI-2016 and IRI-2020 models revealed more substantial discrepancies during day-time intervals; This was likely attributed to the dynamic and complex nature of the ionosphere influenced by solar radiation and other factors. Comparative analysis across the three levels of storm activity demonstrated that IRI2020 provided improved results over IRI2016, particularly during minor geomagnetic storm events. The study demonstrates that IRI2020 is more accurate than IRI-2016 at forecasting ionospheric conditions, especially at night and during moderate geomagnetic storm activity periods. Both models, however, provide valuable insights during challenging space weather conditions, and the results demonstrate their utility in understanding and forecasting the ionosphere’s behavior. The results yield valuable insights into space weather conditions and their effects on technology and communication, highlighting the potential for further improvement in TEC prediction models.\",\"PeriodicalId\":45494,\"journal\":{\"name\":\"Journal of Applied Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jag-2023-0068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2023-0068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Assessing the performance of IRI-2016 and IRI-2020 models using COSMIC-2 GNSS radio occultation TEC data under different magnetic activities over Egypt
Abstract Variations in Total Electron Content (TEC) between the COSMIC-2, IRI-2016, and IRI-2020 are considered under different levels of geomagnetic storm activity: minor, moderate, and severe. TEC values are scrutinized at three levels of the Kp index, which serves as a metric for gauging the strength of a magnetic storm (Kp = 3.0, Kp = 6.0, Kp = 8.0) and across four-time intervals throughout 24 h to understand the performance of the models during both day and night-time conditions. Statistical analysis reveals that the standard deviation of TEC variations is lower during minor storms than moderate and severe. The comparison of variations between COSMIC-2 Radio Occultation TEC and both IRI-2016 and IRI-2020 models revealed more substantial discrepancies during day-time intervals; This was likely attributed to the dynamic and complex nature of the ionosphere influenced by solar radiation and other factors. Comparative analysis across the three levels of storm activity demonstrated that IRI2020 provided improved results over IRI2016, particularly during minor geomagnetic storm events. The study demonstrates that IRI2020 is more accurate than IRI-2016 at forecasting ionospheric conditions, especially at night and during moderate geomagnetic storm activity periods. Both models, however, provide valuable insights during challenging space weather conditions, and the results demonstrate their utility in understanding and forecasting the ionosphere’s behavior. The results yield valuable insights into space weather conditions and their effects on technology and communication, highlighting the potential for further improvement in TEC prediction models.