{"title":"论欧拉和拉格朗日描述中变分原理的对应关系","authors":"A. V. Aksenov, K. P. Druzhkov","doi":"10.1134/S1061920821040014","DOIUrl":null,"url":null,"abstract":"<p> The relationship between the variational principles for equations of continuum mechanics in Eulerian and Lagrangian descriptions is considered. It is shown that, for a system of differential equations in Eulerian variables, the corresponding Lagrangian description is related to introducing nonlocal variables. The connection between the descriptions is obtained in terms of differential coverings. The relation between the variational principles of a system of equations and its symplectic structures is discussed. It is shown that, if a system of equations in Lagrangian variables can be derived from a variational principle, then there is no corresponding variational principle in the Eulerian variables. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"28 4","pages":"411 - 415"},"PeriodicalIF":1.7000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Correspondence between the Variational Principles in the Eulerian and Lagrangian Descriptions\",\"authors\":\"A. V. Aksenov, K. P. Druzhkov\",\"doi\":\"10.1134/S1061920821040014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The relationship between the variational principles for equations of continuum mechanics in Eulerian and Lagrangian descriptions is considered. It is shown that, for a system of differential equations in Eulerian variables, the corresponding Lagrangian description is related to introducing nonlocal variables. The connection between the descriptions is obtained in terms of differential coverings. The relation between the variational principles of a system of equations and its symplectic structures is discussed. It is shown that, if a system of equations in Lagrangian variables can be derived from a variational principle, then there is no corresponding variational principle in the Eulerian variables. </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"28 4\",\"pages\":\"411 - 415\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920821040014\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920821040014","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
On the Correspondence between the Variational Principles in the Eulerian and Lagrangian Descriptions
The relationship between the variational principles for equations of continuum mechanics in Eulerian and Lagrangian descriptions is considered. It is shown that, for a system of differential equations in Eulerian variables, the corresponding Lagrangian description is related to introducing nonlocal variables. The connection between the descriptions is obtained in terms of differential coverings. The relation between the variational principles of a system of equations and its symplectic structures is discussed. It is shown that, if a system of equations in Lagrangian variables can be derived from a variational principle, then there is no corresponding variational principle in the Eulerian variables.
期刊介绍:
Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.