高温下O2+O2碰撞的非平衡解离速率系数

IF 1.6 3区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS High Energy Density Physics Pub Date : 2023-03-01 DOI:10.1016/j.hedp.2022.101026
Huanhuan Zhang , Hong Zhang , XinLu Cheng
{"title":"高温下O2+O2碰撞的非平衡解离速率系数","authors":"Huanhuan Zhang ,&nbsp;Hong Zhang ,&nbsp;XinLu Cheng","doi":"10.1016/j.hedp.2022.101026","DOIUrl":null,"url":null,"abstract":"<div><p>We focus on the collision dissociation process of O<sub>2</sub>+O<sub>2</sub>→O+O+O<sub>2</sub> at high temperatures (8000 K–30000 K). The research method is the new general non-equilibrium dynamics model proposed by Singh et al. The model parameters are determined by calculating the dissociation probability under the specific vibrational energy and the energy distribution functions in the quasi-steady state (QSS). It is found that the dissociation rate is more easily at high vibrational energy levels. Moreover, the energy distribution function deviates from the Boltzmann distribution in the QSS state. We obtain the dissociation rate coefficients at high temperatures by integrating the dissociation probability and the internal energy distribution functions (the Boltzmann distribution, the QSS state distribution, and the non-Boltzmann distribution). Our results demonstrate that the rate coefficients depend on the vibrational temperature and more strongly at a lower translational temperature.</p></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"46 ","pages":"Article 101026"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-equilibrium dissociation rate coefficient of O2+O2 collision at high temperatures\",\"authors\":\"Huanhuan Zhang ,&nbsp;Hong Zhang ,&nbsp;XinLu Cheng\",\"doi\":\"10.1016/j.hedp.2022.101026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We focus on the collision dissociation process of O<sub>2</sub>+O<sub>2</sub>→O+O+O<sub>2</sub> at high temperatures (8000 K–30000 K). The research method is the new general non-equilibrium dynamics model proposed by Singh et al. The model parameters are determined by calculating the dissociation probability under the specific vibrational energy and the energy distribution functions in the quasi-steady state (QSS). It is found that the dissociation rate is more easily at high vibrational energy levels. Moreover, the energy distribution function deviates from the Boltzmann distribution in the QSS state. We obtain the dissociation rate coefficients at high temperatures by integrating the dissociation probability and the internal energy distribution functions (the Boltzmann distribution, the QSS state distribution, and the non-Boltzmann distribution). Our results demonstrate that the rate coefficients depend on the vibrational temperature and more strongly at a lower translational temperature.</p></div>\",\"PeriodicalId\":49267,\"journal\":{\"name\":\"High Energy Density Physics\",\"volume\":\"46 \",\"pages\":\"Article 101026\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Energy Density Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574181822000520\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574181822000520","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

我们主要研究高温(8000 K - 30000 K)下O2+O2→O+O+O2的碰撞解离过程,研究方法是Singh等提出的新的一般非平衡动力学模型。通过计算比振动能量下的解离概率和准稳态下的能量分布函数来确定模型参数。研究发现,在高振动能级时,解离率更高。此外,QSS态的能量分布函数偏离Boltzmann分布。我们通过积分解离概率和内能分布函数(Boltzmann分布、QSS态分布和非Boltzmann分布)得到了高温下的解离速率系数。我们的结果表明,速率系数依赖于振动温度,并且在较低的平移温度下更为强烈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-equilibrium dissociation rate coefficient of O2+O2 collision at high temperatures

We focus on the collision dissociation process of O2+O2→O+O+O2 at high temperatures (8000 K–30000 K). The research method is the new general non-equilibrium dynamics model proposed by Singh et al. The model parameters are determined by calculating the dissociation probability under the specific vibrational energy and the energy distribution functions in the quasi-steady state (QSS). It is found that the dissociation rate is more easily at high vibrational energy levels. Moreover, the energy distribution function deviates from the Boltzmann distribution in the QSS state. We obtain the dissociation rate coefficients at high temperatures by integrating the dissociation probability and the internal energy distribution functions (the Boltzmann distribution, the QSS state distribution, and the non-Boltzmann distribution). Our results demonstrate that the rate coefficients depend on the vibrational temperature and more strongly at a lower translational temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Energy Density Physics
High Energy Density Physics PHYSICS, FLUIDS & PLASMAS-
CiteScore
4.20
自引率
6.20%
发文量
13
审稿时长
6-12 weeks
期刊介绍: High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings. Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.
期刊最新文献
Editorial Board Dynamic localized hot spot mix extraction from images in ICF experiments Study of shocks and ablation front in diamond ablator during a capsule implosion experiment at the National Ignition Facility FLAIM: A reduced volume ignition model for the compression and thermonuclear burn of spherical fuel capsules Frustraum 1100 experimental campaign on the national ignition facility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1