{"title":"稳定的表面结合中间体的长程有序化:甲苯在Ag(110)上氧化的RAIRS、TPRS和STM研究","authors":"Xing Guo, A. Alemozafar, R. Madix","doi":"10.1080/2055074X.2018.1496611","DOIUrl":null,"url":null,"abstract":"ABSTRACT There is long-term interest in catalyst poisoning due to the buildup of carbonaceous species on catalytic metal surfaces. These species are often derived from the reactants themselves in reactions parallel to the primary catalytic cycle. Generally, these species are believed to be randomly distributed on the surface, with locally high concentrations. Using scanning tunneling microscopy (STM), we have found that upon annealing to 400 K a stable intermediate formed by partial oxidation of toluene on Ag(110) forms highly ordered domains with a length scale well over 1000 Å, limited only by the size of surface terraces. Temperature-programmed reaction spectroscopy and STM suggest the intermediate to be adsorbed benzoate species, C6H5CHOO, which decomposes to carbon dioxide and benzene near 550 K when heated. Graphical Abstract","PeriodicalId":43717,"journal":{"name":"Catalysis Structure & Reactivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2055074X.2018.1496611","citationCount":"0","resultStr":"{\"title\":\"Long-range ordering of stable, surface-bound intermediates: RAIRS, TPRS and STM studies of toluene oxidation on Ag(110)\",\"authors\":\"Xing Guo, A. Alemozafar, R. Madix\",\"doi\":\"10.1080/2055074X.2018.1496611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT There is long-term interest in catalyst poisoning due to the buildup of carbonaceous species on catalytic metal surfaces. These species are often derived from the reactants themselves in reactions parallel to the primary catalytic cycle. Generally, these species are believed to be randomly distributed on the surface, with locally high concentrations. Using scanning tunneling microscopy (STM), we have found that upon annealing to 400 K a stable intermediate formed by partial oxidation of toluene on Ag(110) forms highly ordered domains with a length scale well over 1000 Å, limited only by the size of surface terraces. Temperature-programmed reaction spectroscopy and STM suggest the intermediate to be adsorbed benzoate species, C6H5CHOO, which decomposes to carbon dioxide and benzene near 550 K when heated. Graphical Abstract\",\"PeriodicalId\":43717,\"journal\":{\"name\":\"Catalysis Structure & Reactivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/2055074X.2018.1496611\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Structure & Reactivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/2055074X.2018.1496611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Structure & Reactivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2055074X.2018.1496611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Long-range ordering of stable, surface-bound intermediates: RAIRS, TPRS and STM studies of toluene oxidation on Ag(110)
ABSTRACT There is long-term interest in catalyst poisoning due to the buildup of carbonaceous species on catalytic metal surfaces. These species are often derived from the reactants themselves in reactions parallel to the primary catalytic cycle. Generally, these species are believed to be randomly distributed on the surface, with locally high concentrations. Using scanning tunneling microscopy (STM), we have found that upon annealing to 400 K a stable intermediate formed by partial oxidation of toluene on Ag(110) forms highly ordered domains with a length scale well over 1000 Å, limited only by the size of surface terraces. Temperature-programmed reaction spectroscopy and STM suggest the intermediate to be adsorbed benzoate species, C6H5CHOO, which decomposes to carbon dioxide and benzene near 550 K when heated. Graphical Abstract