Y. Bai, Lucas Holden, A. Kealy, S. Zaminpardaz, S. Choy
{"title":"一种用于智能手机无缝定位的室内/室外混合检测方法","authors":"Y. Bai, Lucas Holden, A. Kealy, S. Zaminpardaz, S. Choy","doi":"10.1017/S0373463322000194","DOIUrl":null,"url":null,"abstract":"Abstract Indoor/Outdoor (IO) detection (IOD) using Wi-Fi- and smartphone-based technologies is in high demand and interest in both the industrial and research fields. This paper proposes a novel and effective hybrid IOD (HIOD) approach for detecting a smartphone user's IO location. The HIOD approach uses signals received from both Wi-Fi and GPS as well as the latest positioning technologies such as multilateration, fingerprinting and machine learning. This paper proposes and implements two-level signal-to-noise ratio (SNR) threshold parameters for the first time, which are specifically derived from GPS signals through 42 empirical tests at seven test sites with adequate environmental factors considered. Using the newly derived IOD threshold parameters and a set of IO detection rules, the HIOD approach is then tested at 20 test points (TPs) in a city canyon area, where most of the TPs are under semi-indoor or semi-outdoor conditions. The final test results show that a 100% IOD rate is achieved.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A hybrid indoor/outdoor detection approach for smartphone-based seamless positioning\",\"authors\":\"Y. Bai, Lucas Holden, A. Kealy, S. Zaminpardaz, S. Choy\",\"doi\":\"10.1017/S0373463322000194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Indoor/Outdoor (IO) detection (IOD) using Wi-Fi- and smartphone-based technologies is in high demand and interest in both the industrial and research fields. This paper proposes a novel and effective hybrid IOD (HIOD) approach for detecting a smartphone user's IO location. The HIOD approach uses signals received from both Wi-Fi and GPS as well as the latest positioning technologies such as multilateration, fingerprinting and machine learning. This paper proposes and implements two-level signal-to-noise ratio (SNR) threshold parameters for the first time, which are specifically derived from GPS signals through 42 empirical tests at seven test sites with adequate environmental factors considered. Using the newly derived IOD threshold parameters and a set of IO detection rules, the HIOD approach is then tested at 20 test points (TPs) in a city canyon area, where most of the TPs are under semi-indoor or semi-outdoor conditions. The final test results show that a 100% IOD rate is achieved.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0373463322000194\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463322000194","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A hybrid indoor/outdoor detection approach for smartphone-based seamless positioning
Abstract Indoor/Outdoor (IO) detection (IOD) using Wi-Fi- and smartphone-based technologies is in high demand and interest in both the industrial and research fields. This paper proposes a novel and effective hybrid IOD (HIOD) approach for detecting a smartphone user's IO location. The HIOD approach uses signals received from both Wi-Fi and GPS as well as the latest positioning technologies such as multilateration, fingerprinting and machine learning. This paper proposes and implements two-level signal-to-noise ratio (SNR) threshold parameters for the first time, which are specifically derived from GPS signals through 42 empirical tests at seven test sites with adequate environmental factors considered. Using the newly derived IOD threshold parameters and a set of IO detection rules, the HIOD approach is then tested at 20 test points (TPs) in a city canyon area, where most of the TPs are under semi-indoor or semi-outdoor conditions. The final test results show that a 100% IOD rate is achieved.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.