基于纳米材料物联网的堆叠稀疏去噪自动编码器废水处理预测模型

IF 4.3 4区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL Water Reuse Pub Date : 2023-05-04 DOI:10.2166/wrd.2023.006
Neelakandan Subramani, N. R. Reddy, Ayman A. Ghfar, S. Pandey, Siripuri Kiran, P. Thillai Arasu
{"title":"基于纳米材料物联网的堆叠稀疏去噪自动编码器废水处理预测模型","authors":"Neelakandan Subramani, N. R. Reddy, Ayman A. Ghfar, S. Pandey, Siripuri Kiran, P. Thillai Arasu","doi":"10.2166/wrd.2023.006","DOIUrl":null,"url":null,"abstract":"\n Wastewater is a serious concern for the environment. There is a substantial amount of toxins that are discharged continuously from several pharmacological companies that lead to serious damage to public health and the ecosystem. Present wastewater treatment technologies include primary, tertiary, and secondary treatments that remove numerous contaminants; but pollutants in the nanoscale range were hard to remove with these steps. Some of these include inorganic and organic pollutants, pathogens, pharmaceuticals, and pollutants of developing concern. The utility of nanoparticles was a promising solution to this issue. Nanoparticles have exclusive properties permitting them to potentially eliminate residual pollutants but being eco-friendly and inexpensive. This study develops a new Archimedes optimization algorithm (AOA) with Stacked Sparse Denoising Auto-Encoder (SSDAE) model, named AOA-SSDAE for wastewater management in the IoT environment. The presented AOA-SSDAE technique aims to predict wastewater treatment depending on the influent indicators. In the presented AOA-SSDAE technique, the IoT devices are initially employed for the data collection process and then data normalization is performed to transform the collected data into a uniform format. For the predictive process, the SSDAE model is employed in this paper. To improve the SSDAE model's prediction capability, the AOA-based hyperparameter tuning process is involved.","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Internet of things with nanomaterials-based predictive model for wastewater treatment using stacked sparse denoising auto-encoder\",\"authors\":\"Neelakandan Subramani, N. R. Reddy, Ayman A. Ghfar, S. Pandey, Siripuri Kiran, P. Thillai Arasu\",\"doi\":\"10.2166/wrd.2023.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Wastewater is a serious concern for the environment. There is a substantial amount of toxins that are discharged continuously from several pharmacological companies that lead to serious damage to public health and the ecosystem. Present wastewater treatment technologies include primary, tertiary, and secondary treatments that remove numerous contaminants; but pollutants in the nanoscale range were hard to remove with these steps. Some of these include inorganic and organic pollutants, pathogens, pharmaceuticals, and pollutants of developing concern. The utility of nanoparticles was a promising solution to this issue. Nanoparticles have exclusive properties permitting them to potentially eliminate residual pollutants but being eco-friendly and inexpensive. This study develops a new Archimedes optimization algorithm (AOA) with Stacked Sparse Denoising Auto-Encoder (SSDAE) model, named AOA-SSDAE for wastewater management in the IoT environment. The presented AOA-SSDAE technique aims to predict wastewater treatment depending on the influent indicators. In the presented AOA-SSDAE technique, the IoT devices are initially employed for the data collection process and then data normalization is performed to transform the collected data into a uniform format. For the predictive process, the SSDAE model is employed in this paper. To improve the SSDAE model's prediction capability, the AOA-based hyperparameter tuning process is involved.\",\"PeriodicalId\":34727,\"journal\":{\"name\":\"Water Reuse\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Reuse\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wrd.2023.006\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Reuse","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wrd.2023.006","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1

摘要

废水是一个严重的环境问题。几家药理学公司不断排放大量毒素,对公众健康和生态系统造成严重损害。目前的废水处理技术包括一级、三级和二级处理,可去除大量污染物;但是纳米级的污染物很难通过这些步骤去除。其中一些包括无机和有机污染物、病原体、药物和发展中关注的污染物。纳米粒子的应用是解决这个问题的一个很有希望的方法。纳米粒子具有独特的特性,使它们能够潜在地消除残留的污染物,同时又环保且价格低廉。本研究开发了一种新的阿基米德优化算法(AOA)与堆叠稀疏去噪自编码器(SSDAE)模型,命名为AOA-SSDAE,用于物联网环境下的废水管理。提出的AOA-SSDAE技术旨在根据进水指标预测废水处理。在本文提出的AOA-SSDAE技术中,首先使用物联网设备进行数据采集,然后进行数据归一化,将采集到的数据转换为统一的格式。在预测过程中,本文采用了SSDAE模型。为了提高SSDAE模型的预测能力,采用了基于面向对象的超参数整定过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Internet of things with nanomaterials-based predictive model for wastewater treatment using stacked sparse denoising auto-encoder
Wastewater is a serious concern for the environment. There is a substantial amount of toxins that are discharged continuously from several pharmacological companies that lead to serious damage to public health and the ecosystem. Present wastewater treatment technologies include primary, tertiary, and secondary treatments that remove numerous contaminants; but pollutants in the nanoscale range were hard to remove with these steps. Some of these include inorganic and organic pollutants, pathogens, pharmaceuticals, and pollutants of developing concern. The utility of nanoparticles was a promising solution to this issue. Nanoparticles have exclusive properties permitting them to potentially eliminate residual pollutants but being eco-friendly and inexpensive. This study develops a new Archimedes optimization algorithm (AOA) with Stacked Sparse Denoising Auto-Encoder (SSDAE) model, named AOA-SSDAE for wastewater management in the IoT environment. The presented AOA-SSDAE technique aims to predict wastewater treatment depending on the influent indicators. In the presented AOA-SSDAE technique, the IoT devices are initially employed for the data collection process and then data normalization is performed to transform the collected data into a uniform format. For the predictive process, the SSDAE model is employed in this paper. To improve the SSDAE model's prediction capability, the AOA-based hyperparameter tuning process is involved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Reuse
Water Reuse Multiple-
CiteScore
6.20
自引率
8.90%
发文量
0
审稿时长
7 weeks
期刊最新文献
Removal of Tellurium(IV) from environmental aquatic systems using metal-organic framework material MIL-100(Fe) Effectiveness and health risk assessment of drinking water from different sources treated by local household water treatment methods in Bamenda, Cameroon Adsorption efficiency of biochar produced by aquaculture by-products for removing geosmin in aquaculture environment Enhancing stormwater treatment through ultrafiltration: impact of cleaning chemicals and backwash duration on membrane efficiency cutting-edge research on the action plan for the prevention and control of emerging contaminants in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1