Mojtaba Mehraein , Anton J. Schleiss , Marjan Goodarzi
{"title":"90˚急转弯处丁坝位置对流场的影响:关注各向异性程度和各向异性性质","authors":"Mojtaba Mehraein , Anton J. Schleiss , Marjan Goodarzi","doi":"10.1016/j.jher.2023.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, the flow features around a spur dike located in a 90˚ sharp channel bend have been studied experimentally in detail. Results showed that the effects of the spur dike on upstream sections increased by increasing α (spur dike location from the beginning of the bend). In addition, by increasing <em>α</em>, the horseshoe vortex (C3) and secondary flow in the channel bend (C1) strengthened. The energy and the Reynolds shear stress in the C3 region decreased by increasing α. It is recommended to use a Barycenteric Map (BM) instead of the normal Reynolds stresses to find the anisotropy nature accurately. A strong anisotropic condition was detected at the border of the recirculation flow region and the main flow. However, in the C3 and the interaction regions, the isotropy condition improved. In the main flow region, by increasing α, the isotropy degree improved. However, by increasing α, an increase in the development of the region with a high anisotropy degree towards the recirculation region was observed. The anisotropy degree in the near-bed layer region and the shear layer region is comparable. However, the anisotropy nature is different. The maximum error of the numerical simulation based on isotropic turbulence occurred at the shear layer region where the severe cigar-shaped turbulence occurred.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"48 ","pages":"Pages 15-30"},"PeriodicalIF":2.4000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effects of a spur dike location in a 90° sharp channel bend on flow field: Focus on anisotropy degree and anisotropy nature\",\"authors\":\"Mojtaba Mehraein , Anton J. Schleiss , Marjan Goodarzi\",\"doi\":\"10.1016/j.jher.2023.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research, the flow features around a spur dike located in a 90˚ sharp channel bend have been studied experimentally in detail. Results showed that the effects of the spur dike on upstream sections increased by increasing α (spur dike location from the beginning of the bend). In addition, by increasing <em>α</em>, the horseshoe vortex (C3) and secondary flow in the channel bend (C1) strengthened. The energy and the Reynolds shear stress in the C3 region decreased by increasing α. It is recommended to use a Barycenteric Map (BM) instead of the normal Reynolds stresses to find the anisotropy nature accurately. A strong anisotropic condition was detected at the border of the recirculation flow region and the main flow. However, in the C3 and the interaction regions, the isotropy condition improved. In the main flow region, by increasing α, the isotropy degree improved. However, by increasing α, an increase in the development of the region with a high anisotropy degree towards the recirculation region was observed. The anisotropy degree in the near-bed layer region and the shear layer region is comparable. However, the anisotropy nature is different. The maximum error of the numerical simulation based on isotropic turbulence occurred at the shear layer region where the severe cigar-shaped turbulence occurred.</p></div>\",\"PeriodicalId\":49303,\"journal\":{\"name\":\"Journal of Hydro-environment Research\",\"volume\":\"48 \",\"pages\":\"Pages 15-30\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydro-environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570644323000175\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644323000175","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
The effects of a spur dike location in a 90° sharp channel bend on flow field: Focus on anisotropy degree and anisotropy nature
In this research, the flow features around a spur dike located in a 90˚ sharp channel bend have been studied experimentally in detail. Results showed that the effects of the spur dike on upstream sections increased by increasing α (spur dike location from the beginning of the bend). In addition, by increasing α, the horseshoe vortex (C3) and secondary flow in the channel bend (C1) strengthened. The energy and the Reynolds shear stress in the C3 region decreased by increasing α. It is recommended to use a Barycenteric Map (BM) instead of the normal Reynolds stresses to find the anisotropy nature accurately. A strong anisotropic condition was detected at the border of the recirculation flow region and the main flow. However, in the C3 and the interaction regions, the isotropy condition improved. In the main flow region, by increasing α, the isotropy degree improved. However, by increasing α, an increase in the development of the region with a high anisotropy degree towards the recirculation region was observed. The anisotropy degree in the near-bed layer region and the shear layer region is comparable. However, the anisotropy nature is different. The maximum error of the numerical simulation based on isotropic turbulence occurred at the shear layer region where the severe cigar-shaped turbulence occurred.
期刊介绍:
The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers.
Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.