非同二阶非线性多智能体系统的鲁棒蜂拥

Xiuxian Li, Housheng Su, Li Li
{"title":"非同二阶非线性多智能体系统的鲁棒蜂拥","authors":"Xiuxian Li,&nbsp;Housheng Su,&nbsp;Li Li","doi":"10.1007/s43684-021-00007-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the robust flocking problem for second-order nonlinear systems with a leader and external disturbances. In contrast with most of second-order systems in the literature, the intrinsic dynamics here are nonlinear and non-identical that depend not only on the velocity but also on the position, which is more realistic. Moreover, the interaction topology is undirected and switching. Provided that the leader’s velocity may be constant or time-varying, two distributed flocking control laws have been proposed for two cases to make the differences of the velocities between all followers and the leader approach to zero asymptotically. The proposed distributed flocking control laws are both model-independent which results in the effectiveness of the controllers to cope with the different intrinsic dynamics of the followers and the leader under some assumptions on boundedness of several states. An example is given to illustrate the validity of the theoretical results.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-021-00007-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Robust flocking for non-identical second-order nonlinear multi-agent systems\",\"authors\":\"Xiuxian Li,&nbsp;Housheng Su,&nbsp;Li Li\",\"doi\":\"10.1007/s43684-021-00007-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the robust flocking problem for second-order nonlinear systems with a leader and external disturbances. In contrast with most of second-order systems in the literature, the intrinsic dynamics here are nonlinear and non-identical that depend not only on the velocity but also on the position, which is more realistic. Moreover, the interaction topology is undirected and switching. Provided that the leader’s velocity may be constant or time-varying, two distributed flocking control laws have been proposed for two cases to make the differences of the velocities between all followers and the leader approach to zero asymptotically. The proposed distributed flocking control laws are both model-independent which results in the effectiveness of the controllers to cope with the different intrinsic dynamics of the followers and the leader under some assumptions on boundedness of several states. An example is given to illustrate the validity of the theoretical results.</p></div>\",\"PeriodicalId\":71187,\"journal\":{\"name\":\"自主智能系统(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43684-021-00007-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自主智能系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43684-021-00007-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-021-00007-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有领导者和外部干扰的二阶非线性系统的鲁棒成群问题。与文献中的大多数二阶系统相比,本文中的内在动力学是非线性和非相同的,不仅取决于速度,还取决于位置,这更符合实际情况。此外,交互拓扑结构是无向和切换的。在领导者的速度可以是恒定或时变的情况下,针对两种情况提出了两种分布式成群控制法则,使所有跟随者与领导者之间的速度差渐近为零。所提出的分布式羊群控制法则都与模型无关,这使得控制器能在若干状态有界的假设条件下,有效地应对跟随者和领导者的不同内在动态。本文举例说明了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust flocking for non-identical second-order nonlinear multi-agent systems

This paper investigates the robust flocking problem for second-order nonlinear systems with a leader and external disturbances. In contrast with most of second-order systems in the literature, the intrinsic dynamics here are nonlinear and non-identical that depend not only on the velocity but also on the position, which is more realistic. Moreover, the interaction topology is undirected and switching. Provided that the leader’s velocity may be constant or time-varying, two distributed flocking control laws have been proposed for two cases to make the differences of the velocities between all followers and the leader approach to zero asymptotically. The proposed distributed flocking control laws are both model-independent which results in the effectiveness of the controllers to cope with the different intrinsic dynamics of the followers and the leader under some assumptions on boundedness of several states. An example is given to illustrate the validity of the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Stabilization of nonlinear safety-critical systems by relaxed converse Lyapunov-barrier approach and its applications in robotic systems Pedestrian safety alarm system based on binocular distance measurement for trucks using recognition feature analysis Multi-objective optimal trajectory planning for manipulators based on CMOSPBO A multi-step regularity assessment and joint prediction system for ordering time series based on entropy and deep learning Life cycle assessment of metal powder production: a Bayesian stochastic Kriging model-based autonomous estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1