环保型制冷剂R13I1在喷射膨胀制冷循环中用作工质的性能研究

IF 0.9 Q4 THERMODYNAMICS International Journal of Thermodynamics Pub Date : 2023-08-09 DOI:10.5541/ijot.1263939
Youcef Maalem, Youcef Tamene, H. Madani
{"title":"环保型制冷剂R13I1在喷射膨胀制冷循环中用作工质的性能研究","authors":"Youcef Maalem, Youcef Tamene, H. Madani","doi":"10.5541/ijot.1263939","DOIUrl":null,"url":null,"abstract":"Knowing that from 2030 refrigerants used in refrigerating engineering should have a global warming potential (GWP) of less than 150. Searching for eco-friendly refrigerants with good performance and minimal environmental impact to substitute conventional working fluids such as R134a (GWP=1430) represents a great challenge for researchers. \nThe present research aims to investigate and compare the performances of the eco-friendly refrigerant R13I1 (Zero GWP) used as a possible new working fluid in the ejector-expansion refrigeration cycle (EERC) with the commonly used R134a which has good performances but a high GWP. To reach this objective, a numerical program was developed using MATLAB software to evaluate the coefficient of performance (COP), the entrainment ratio (µ), the exergy destruction and the exergy efficiency for both refrigerants. Furthermore, the effect of the diffuser efficiency of the ejector on the COP and the compressor work was explored. Furthermore, the effect of the diffuser efficiency of the ejector on the COP, and the compressor work were explored. The simulation was realized for Tc selected between 30 and 55 °C and Te ranging between -10 and 10 °C. Results proved that the use of R13I1 as a working fluid in the EERC system exhibited a higher COP, µ, and exergy efficiency, as well as lower exergy destruction compared with R134a under the same operating temperatures. On another hand, the energetic analysis revealed that as Tc increases the COP and µ decrease. However, as Te varies from -10 and 10 °C, the COP and µ increase. Regarding exergy analysis, it should be noted that both exergy destruction and exergy efficiency are sensitively influenced by Tc more than Te. Overall, the study confirms that R13I1 could be a suitable substitute for the phase-out R134a in terms of performance and environmental protection.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performances Investigation of the Eco-friendly Refrigerant R13I1 used as Working Fluid in the Ejector-Expansion Refrigeration Cycle\",\"authors\":\"Youcef Maalem, Youcef Tamene, H. Madani\",\"doi\":\"10.5541/ijot.1263939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowing that from 2030 refrigerants used in refrigerating engineering should have a global warming potential (GWP) of less than 150. Searching for eco-friendly refrigerants with good performance and minimal environmental impact to substitute conventional working fluids such as R134a (GWP=1430) represents a great challenge for researchers. \\nThe present research aims to investigate and compare the performances of the eco-friendly refrigerant R13I1 (Zero GWP) used as a possible new working fluid in the ejector-expansion refrigeration cycle (EERC) with the commonly used R134a which has good performances but a high GWP. To reach this objective, a numerical program was developed using MATLAB software to evaluate the coefficient of performance (COP), the entrainment ratio (µ), the exergy destruction and the exergy efficiency for both refrigerants. Furthermore, the effect of the diffuser efficiency of the ejector on the COP and the compressor work was explored. Furthermore, the effect of the diffuser efficiency of the ejector on the COP, and the compressor work were explored. The simulation was realized for Tc selected between 30 and 55 °C and Te ranging between -10 and 10 °C. Results proved that the use of R13I1 as a working fluid in the EERC system exhibited a higher COP, µ, and exergy efficiency, as well as lower exergy destruction compared with R134a under the same operating temperatures. On another hand, the energetic analysis revealed that as Tc increases the COP and µ decrease. However, as Te varies from -10 and 10 °C, the COP and µ increase. Regarding exergy analysis, it should be noted that both exergy destruction and exergy efficiency are sensitively influenced by Tc more than Te. Overall, the study confirms that R13I1 could be a suitable substitute for the phase-out R134a in terms of performance and environmental protection.\",\"PeriodicalId\":14438,\"journal\":{\"name\":\"International Journal of Thermodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5541/ijot.1263939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5541/ijot.1263939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

知道从2030年起,制冷工程中使用的制冷剂的全球变暖潜能值(GWP)应低于150。寻找性能良好、对环境影响最小的环保制冷剂来替代R134a(GWP=1430)等传统工作流体对研究人员来说是一个巨大的挑战。本研究旨在研究和比较环保制冷剂R13I1(零GWP)作为喷射器膨胀制冷循环(EERC)中可能的新工作流体与常用的性能良好但GWP高的R134a的性能。为了实现这一目标,使用MATLAB软件开发了一个数值程序来评估两种制冷剂的性能系数(COP)、夹带率(µ)、火用破坏和火用效率。此外,还探讨了引射器扩压器效率对COP和压缩机功的影响。此外,还探讨了引射器扩压器效率对COP和压缩机功的影响。Tc选择在30和55°C之间,Te选择在-10和10°C之间。结果证明,在相同的操作温度下,与R134a相比,在EERC系统中使用R13I1作为工作流体表现出更高的COP、µ和火用效率,以及更低的火用破坏。另一方面,能量分析表明,随着Tc的增加,COP和µ减小。然而,当Te在-10和10°C之间变化时,COP和µ增加。关于火用分析,应该注意的是,Tc比Te更敏感地影响火用破坏和火用效率。总体而言,该研究证实,就性能和环境保护而言,R13I1可能是逐步淘汰R134a的合适替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performances Investigation of the Eco-friendly Refrigerant R13I1 used as Working Fluid in the Ejector-Expansion Refrigeration Cycle
Knowing that from 2030 refrigerants used in refrigerating engineering should have a global warming potential (GWP) of less than 150. Searching for eco-friendly refrigerants with good performance and minimal environmental impact to substitute conventional working fluids such as R134a (GWP=1430) represents a great challenge for researchers. The present research aims to investigate and compare the performances of the eco-friendly refrigerant R13I1 (Zero GWP) used as a possible new working fluid in the ejector-expansion refrigeration cycle (EERC) with the commonly used R134a which has good performances but a high GWP. To reach this objective, a numerical program was developed using MATLAB software to evaluate the coefficient of performance (COP), the entrainment ratio (µ), the exergy destruction and the exergy efficiency for both refrigerants. Furthermore, the effect of the diffuser efficiency of the ejector on the COP and the compressor work was explored. Furthermore, the effect of the diffuser efficiency of the ejector on the COP, and the compressor work were explored. The simulation was realized for Tc selected between 30 and 55 °C and Te ranging between -10 and 10 °C. Results proved that the use of R13I1 as a working fluid in the EERC system exhibited a higher COP, µ, and exergy efficiency, as well as lower exergy destruction compared with R134a under the same operating temperatures. On another hand, the energetic analysis revealed that as Tc increases the COP and µ decrease. However, as Te varies from -10 and 10 °C, the COP and µ increase. Regarding exergy analysis, it should be noted that both exergy destruction and exergy efficiency are sensitively influenced by Tc more than Te. Overall, the study confirms that R13I1 could be a suitable substitute for the phase-out R134a in terms of performance and environmental protection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
35
期刊介绍: The purpose and scope of the International Journal of Thermodynamics is · to provide a forum for the publication of original theoretical and applied work in the field of thermodynamics as it relates to systems, states, processes, and both non-equilibrium and equilibrium phenomena at all temporal and spatial scales. · to provide a multidisciplinary and international platform for the dissemination to academia and industry of both scientific and engineering contributions, which touch upon a broad class of disciplines that are foundationally linked to thermodynamics and the methods and analyses derived there from. · to assess how both the first and particularly the second laws of thermodynamics touch upon these disciplines. · to highlight innovative & pioneer research in the field of thermodynamics in the following subjects (but not limited to the following, novel research in new areas are strongly suggested): o Entropy in thermodynamics and information theory. o Thermodynamics in process intensification. o Biothermodynamics (topics such as self-organization far from equilibrium etc.) o Thermodynamics of nonadditive systems. o Nonequilibrium thermal complex systems. o Sustainable design and thermodynamics. o Engineering thermodynamics. o Energy.
期刊最新文献
Thermodynamic Modeling of Solubility of Some Antibiotics in Supercritical Carbon Dioxide Using Simplified Equation of State Approach Performance Evaluation of R1224yd as Alternative to R123 and R245fa for Vapor Compression Heat Pump System Computational Fluid Dynamic Analysis of Solar Dryer Equipped with Different Phase Change Materials Development and Economical Analysis of Innovative Parabolic Trough Collector Integrated Solar Still Use the Thermodynamic State Equations to Analyze the Non-ideality of Gas Mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1