R. Saha, RaymondH. Thomas, K. Hawboldt, M. Nadeem, M. Cheema, L. Galagedara
{"title":"生物炭在北方恶唑中的应用改善了土壤水力特性并控制了氮动力学","authors":"R. Saha, RaymondH. Thomas, K. Hawboldt, M. Nadeem, M. Cheema, L. Galagedara","doi":"10.1139/cjss-2022-0086","DOIUrl":null,"url":null,"abstract":"Abstract The study aimed to investigate the effects of biochar (BC) application on hydraulic properties and nitrogen (N) transport in a podzolic soil profile. Soil samples were collected from an agricultural research field in Pasadena, Newfoundland, Canada. The following three types of leaching columns were prepared: (i) topsoil, (ii) top and E-horizon soil, and (iii) mixed soil (2:1 ratio of topsoil and E-horizon soil). Granular biochar (GBC) and powder biochar (PBC) were mixed with soils at the rate of 0%, 1% and 2% (w/w). BC’s morphological structure and pore size distribution were examined using a scanning electron microscope, and the specific surface area was assessed by the Brunauer−Emmett−Teller method. Soil physical and hydraulic properties (bulk density, porosity, field capacity (FC), permanent wilting point, plant available water (PAW)), leaching concentration of nitrate (NO3−) and ammonium (NH4+), and volume of leachate were measured through a total of 378 experiments under laboratory conditions. GBC and PBC showed hydrophobic and hydrophilic characteristics, respectively. With the 2% PBC amendment, porosity increased by 3%, FC by 10%, and PAW by 13% in the mixed soil and reduced NO3− leaching by 36% in top and E-horizon soil and NH4+ leaching by 72% in mixed soil. On the other hand, NO3− and NH4+ leaching was reduced by 26% and 33% in mixed soil when treated with 2% GBC. A 2% application rate for both BC (GBC and PBC) showed the best performance to enhance soil hydraulic properties and retain significant amounts of NO3− and NH4+ in the boreal podzol.","PeriodicalId":9384,"journal":{"name":"Canadian Journal of Soil Science","volume":"103 1","pages":"353 - 371"},"PeriodicalIF":1.5000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochar applications to boreal podzol improve soil hydraulic properties and control nitrogen dynamics\",\"authors\":\"R. Saha, RaymondH. Thomas, K. Hawboldt, M. Nadeem, M. Cheema, L. Galagedara\",\"doi\":\"10.1139/cjss-2022-0086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The study aimed to investigate the effects of biochar (BC) application on hydraulic properties and nitrogen (N) transport in a podzolic soil profile. Soil samples were collected from an agricultural research field in Pasadena, Newfoundland, Canada. The following three types of leaching columns were prepared: (i) topsoil, (ii) top and E-horizon soil, and (iii) mixed soil (2:1 ratio of topsoil and E-horizon soil). Granular biochar (GBC) and powder biochar (PBC) were mixed with soils at the rate of 0%, 1% and 2% (w/w). BC’s morphological structure and pore size distribution were examined using a scanning electron microscope, and the specific surface area was assessed by the Brunauer−Emmett−Teller method. Soil physical and hydraulic properties (bulk density, porosity, field capacity (FC), permanent wilting point, plant available water (PAW)), leaching concentration of nitrate (NO3−) and ammonium (NH4+), and volume of leachate were measured through a total of 378 experiments under laboratory conditions. GBC and PBC showed hydrophobic and hydrophilic characteristics, respectively. With the 2% PBC amendment, porosity increased by 3%, FC by 10%, and PAW by 13% in the mixed soil and reduced NO3− leaching by 36% in top and E-horizon soil and NH4+ leaching by 72% in mixed soil. On the other hand, NO3− and NH4+ leaching was reduced by 26% and 33% in mixed soil when treated with 2% GBC. A 2% application rate for both BC (GBC and PBC) showed the best performance to enhance soil hydraulic properties and retain significant amounts of NO3− and NH4+ in the boreal podzol.\",\"PeriodicalId\":9384,\"journal\":{\"name\":\"Canadian Journal of Soil Science\",\"volume\":\"103 1\",\"pages\":\"353 - 371\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1139/cjss-2022-0086\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjss-2022-0086","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Biochar applications to boreal podzol improve soil hydraulic properties and control nitrogen dynamics
Abstract The study aimed to investigate the effects of biochar (BC) application on hydraulic properties and nitrogen (N) transport in a podzolic soil profile. Soil samples were collected from an agricultural research field in Pasadena, Newfoundland, Canada. The following three types of leaching columns were prepared: (i) topsoil, (ii) top and E-horizon soil, and (iii) mixed soil (2:1 ratio of topsoil and E-horizon soil). Granular biochar (GBC) and powder biochar (PBC) were mixed with soils at the rate of 0%, 1% and 2% (w/w). BC’s morphological structure and pore size distribution were examined using a scanning electron microscope, and the specific surface area was assessed by the Brunauer−Emmett−Teller method. Soil physical and hydraulic properties (bulk density, porosity, field capacity (FC), permanent wilting point, plant available water (PAW)), leaching concentration of nitrate (NO3−) and ammonium (NH4+), and volume of leachate were measured through a total of 378 experiments under laboratory conditions. GBC and PBC showed hydrophobic and hydrophilic characteristics, respectively. With the 2% PBC amendment, porosity increased by 3%, FC by 10%, and PAW by 13% in the mixed soil and reduced NO3− leaching by 36% in top and E-horizon soil and NH4+ leaching by 72% in mixed soil. On the other hand, NO3− and NH4+ leaching was reduced by 26% and 33% in mixed soil when treated with 2% GBC. A 2% application rate for both BC (GBC and PBC) showed the best performance to enhance soil hydraulic properties and retain significant amounts of NO3− and NH4+ in the boreal podzol.
期刊介绍:
The Canadian Journal of Soil Science is an international peer-reviewed journal published in cooperation with the Canadian Society of Soil Science. The journal publishes original research on the use, management, structure and development of soils and draws from the disciplines of soil science, agrometeorology, ecology, agricultural engineering, environmental science, hydrology, forestry, geology, geography and climatology. Research is published in a number of topic sections including: agrometeorology; ecology, biological processes and plant interactions; composition and chemical processes; physical processes and interfaces; genesis, landscape processes and relationships; contamination and environmental stewardship; and management for agricultural, forestry and urban uses.