S. Perveen, M. Yousaf, M. Mushtaq, N. Sarwar, M. Khan, S. Nadeem, Faisalabad Pakistan. Biology
{"title":"几种化感农林业和果树植物对大麻草的生物除草潜力","authors":"S. Perveen, M. Yousaf, M. Mushtaq, N. Sarwar, M. Khan, S. Nadeem, Faisalabad Pakistan. Biology","doi":"10.25252/SE/19/71655","DOIUrl":null,"url":null,"abstract":"Herbicide resistance and environmental pollution are the risks associated with chemical control of weeds. Allelopathic plant extracts may be exploited for weed management as an alternative to commercial herbicides. Before development of allelochemical-based eco-friendly herbicides, bioherbicidal potential of plants need to be evaluated. Present study was conducted to evaluate phytotoxic allelopathic impact of leaf extract from eight agroforestry and fruit plant species against Lepidium sativum. The results showed that all plant species delayed germination and inhibited root length, shoot length and seedling dry weight of Lepidium sativum. Four plant species such as Moringa oleifera, Mangifera indica, Albizia procera and Delonix regia were most phytotoxic with Lepidium sativum root growth inhibition of ≥85% as compared with control and seedling persistence index <30% of control. Phenolic contents were maximum in Mangifera indica (137 mg g -1 leaf dry weight) followed by Delonix regia (130 mg g -1 leaf dry weight). The results suggest that phytotoxic action of leaf extract of plant species may be due to presence of phenolic allelochemicals that may be exploited further either directly for weed management or development of bioherbicides.","PeriodicalId":21762,"journal":{"name":"Soil & Environment","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Bioherbicidal potential of some allelopathic agroforestry and fruit plant species against Lepidium sativum\",\"authors\":\"S. Perveen, M. Yousaf, M. Mushtaq, N. Sarwar, M. Khan, S. Nadeem, Faisalabad Pakistan. Biology\",\"doi\":\"10.25252/SE/19/71655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herbicide resistance and environmental pollution are the risks associated with chemical control of weeds. Allelopathic plant extracts may be exploited for weed management as an alternative to commercial herbicides. Before development of allelochemical-based eco-friendly herbicides, bioherbicidal potential of plants need to be evaluated. Present study was conducted to evaluate phytotoxic allelopathic impact of leaf extract from eight agroforestry and fruit plant species against Lepidium sativum. The results showed that all plant species delayed germination and inhibited root length, shoot length and seedling dry weight of Lepidium sativum. Four plant species such as Moringa oleifera, Mangifera indica, Albizia procera and Delonix regia were most phytotoxic with Lepidium sativum root growth inhibition of ≥85% as compared with control and seedling persistence index <30% of control. Phenolic contents were maximum in Mangifera indica (137 mg g -1 leaf dry weight) followed by Delonix regia (130 mg g -1 leaf dry weight). The results suggest that phytotoxic action of leaf extract of plant species may be due to presence of phenolic allelochemicals that may be exploited further either directly for weed management or development of bioherbicides.\",\"PeriodicalId\":21762,\"journal\":{\"name\":\"Soil & Environment\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil & Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25252/SE/19/71655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25252/SE/19/71655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Bioherbicidal potential of some allelopathic agroforestry and fruit plant species against Lepidium sativum
Herbicide resistance and environmental pollution are the risks associated with chemical control of weeds. Allelopathic plant extracts may be exploited for weed management as an alternative to commercial herbicides. Before development of allelochemical-based eco-friendly herbicides, bioherbicidal potential of plants need to be evaluated. Present study was conducted to evaluate phytotoxic allelopathic impact of leaf extract from eight agroforestry and fruit plant species against Lepidium sativum. The results showed that all plant species delayed germination and inhibited root length, shoot length and seedling dry weight of Lepidium sativum. Four plant species such as Moringa oleifera, Mangifera indica, Albizia procera and Delonix regia were most phytotoxic with Lepidium sativum root growth inhibition of ≥85% as compared with control and seedling persistence index <30% of control. Phenolic contents were maximum in Mangifera indica (137 mg g -1 leaf dry weight) followed by Delonix regia (130 mg g -1 leaf dry weight). The results suggest that phytotoxic action of leaf extract of plant species may be due to presence of phenolic allelochemicals that may be exploited further either directly for weed management or development of bioherbicides.